Dataframes

An implementation of a MATLAB object inspired by the Splus/R dataframe. A dataframe is a 2-D array where the columns correspond to different variables, and the rows correspond to different observations of the same variable – in short the usual input for multivariate analysis.

Creating dataframes

df=dataframe(colnamesvec,vec1,vec2,vec3,…) all vectors must be same length, #vecs=length(colnames)

or df=dataframe(colnamesvec,ary) (# cols in ary=length colnames)

df=dataframe(filename/URLstr,nSkipRows,bSkipColsVec,delimstr) arguments in any order

df=dataframe()

slurps up equal lengthed vectors in current workspace

df=dataframe(‘excel’) load from excel

Working with dataframes

ary=double(df[,collist[,rowlist]]) or +df converts data to doubles (numbers), currently codes groups as 1,2,3???

display(df) provides a summary of the shape of the dataframe

pretty(df) provides a tabularized output of the data/metadata – one column dataframes are transposed

summary(df)
 provides summary statistics

df=addrow(df,rowcellvec[,rowlabel]) adds a row, presence/absence of rowlab matches status of rownames

df=addcol(df,colnamestr,colvec) adds a column to the right side of the data

[df df …] horizontally concatenates dataframes (appends columns), row length must be constant

df=rownames(df,n|conamestr) turns nth column into rownames (removing from list of columns)

df=rownames(df,cellstrvec) adds vector of rownames (must be same length as dataframe)

cellstrvec=rownames(df) returns list of rownames, converting # to strings if need be

cellstrvec=colnames(df) returns list of columnames

df=transform(df,’clear’)
clears all transformations

df=transform(df,‘var’,’assq’|’log’[,n]|’logit’|’none’,….) sets transformation that remains on

df=depend(d)=-d

get dependent variable

Subscripting dataframes

In general, the () are used to subscript rows, the .name & .name{} are used to subscript columns

~df
brings up gui

Row subscripting ()

df(numvec)
selects the identified rows

df(‘str’)

selects the identified row (by rowname)

df({‘str1’,’str2’,…})
selects the identified rows by rowname

df(‘str1’,’str2’,….)
select the identified rows

df(bool)
select the identified rows

df(:)

uses same rows as last time

vec=sample(df,N|pct[,bResample])
generates vector to use as row subscript of random samples

Column subscripting .

df.colname

df.same

uses same columns as last time

df.poly{‘var1’,’var2’,n)
polynomial up to order n

df.const

adds constant vector of ones

df.depend(‘var’)

sets ‘var’ as the dependent variable and automatically excludes it

These may be combined according to the following rules:

1) only one row subscript ()

2) position of row subscript may be anywhere in sequence

3) may have many column subscripts

4) may even subscript one column twice

e.g.: df.bob(3:4).fred.bob

Subscripted assignment also works:

df(rowvec)=vec

df(rowvec).col1.col2=matrix

df.col1=vec

Analyzing dataframes

Analysis

summary(df)

gives #, %not NaN, mean/std/skew for metric, %/% for Boolean, %/%/%… for category

plot(df)

gives SPLOM of first 10 with names applied

plot(df.depend())

gives plot of dependent vs first 12 independent with scatter & spline/kernel

map(df[,vec])

plots dependent variable if lat/lon or x/y columns also in df (map(df,ht) or map(df,bool)(scatter)

corrcoef(df)

gives redlight/greenlight with corr coef & p value printed table

[score=]princomp(df)
 principal components

boxplot(df)

Box plot *requires stats library

Models

m=regress(df.depend{})
linear regression - must add .const if you want

m=regress(y,x)

if dependent variable not in dataframe

m=regress(~df)

GUI to select

m=tree(df)

CART – don’t add .const *requires stats library

m=logit(df)

Logistic regression – don’t add .const *requires stats library

degfreedom=df(m), r2=r2(m), r=resid(m), y=yhat(m), y=yact(m), y=pred(m,data) , str=dep(m), cellstr=indep(m)

plot(m)

pretty(m)

residplot(m)

Future Functions

Utility

df=deleterows(df..) (use subscript to avoid duplication of code for time, etc)

df=rownames(df,startyr.startper,endyr.endper,freq[,calstartyr.calstartper])

df=rownames(df,‘latlon’,latcol,loncol)

df=rownames(df,’xy’,xcol,ycol)

cellstr=colsused(df,bRawDataonly) - returns columns from last subscript, bRawDataOnly ignore interactions etc

cellstr=rowsused(bRetBool) - both use global of form objname$cols, objname$rows

aggregate(df,nPersPerYr|[1 1 1 2 2 2 …]) where vec same length as current persperyr

[m1,m2,m3,…,maplegend]=grid(df[,’method’]) - converts pt data into a map using interpolation

Future column subscripting

{‘var1’,’var2’…} interaction term as in var1*var2…

.inter{‘var1’,’var2’,lvlsvec) all possible interactions with 1,2,.. terms (as set by levels vec) so inter{‘v1’,’v2’,1;2) gives v1+v2+v1*v2

.minus{‘v1’,’v2’…} removes terms from those previously listed (default is all)

.lag{‘var1’,nlag} n negative means lead

Future Analysis

mtx=distance(df) – calculates distance between all pairs of points

period(df) – calculates & displays ACF & periodogram charts

vario(df) – calculates semivariograms (corellograms?) for each variable

gam(df) – general additive model??

[ary,cols,rows]=crosstab(df[,colname,mean|std|min|max) – calcs cross tab (or consolidation on column) using all groups in df, reports p for lower order terms as well

t-test & non-parmetric, ANOVA?

Future models

glim, gam, rma, nlin(df, log,exp,mm,formula), move princomp

Future time & Space

time specified as yr.per where # periods per year (maybe fractional) is also known for dataframe

row subscripting of form (yr.per,yr.per) or (.per) or (yr-yr) allowed

spatial may be latlon or xy

rowsubscripting of form (latlim,lonlim) and (multipolygon) allowed

Other enhancements/bugs

allow ordered vectors (group but allow storage of ordered unq, union of cellstrs can determine if new/old list same)

labels type column

NaN in logicals

attach – dump data into separate variables

writefile

colname functions to manipulate names

rbind (vertical concatenation)

boxcox transformation

princomp with groups affects plot & gives linear discriminant analysis?

Installation instructions

Get the “matdat.zip” file. Place it in your MatLab working directory (e.g. …\matlab\work). Unzip it with the “-d” option (or “Keep directories” in the GUI version of unzip). This will place this documentation file in your working directory and create two subdirectories off of your working directory (@dataframe, and @model). These directories will have subdirectories as well. Make sure the working directory is on the path. You’re ready to go.

An example

Paste the following text into the file “budworm.csv” It is reported by Collett 1991 and also found in Ripley’s MASS book on S-plus. It measures the lethality of a chemical for male & female tobacco budworms

Dose,Sex,Died

1,M,1

2,M,4

4,M,9

8,M,13

16,M,18

32,M,20

1,F,0

2,F,2

4,F,6

8,F,10

16,F,12

32,F,16

Load the textfile into a dataframe by typing the following in MatLab (beware of the funky quotes if you cut and paste the command directly from here into MatLab):

df=dataframe(‘[path]budworm.csv’,’,’)

Alternative you can type the table into Excel, select the table and returning to MatLab and typing

df=dataframe(‘excel’)

Of course “df” is just a variable name holding an object. You can use any name you want. This dataframe does not have row names, but you can create row names if you wish.

Simply typing “df” to view the dataframe object will summarize the rows and columns. To get a complete, formatted printout type “pretty(df)”.

Now let’s try some subscripting. To subscript a column, use the “.” notation:

df.Sex

Warning: the first time you subscript a dataframe in a MatLab session you will get a warning about an error in subsref. This as best I can tell is a matlab bug. You can ignore it and it will not recur within a session.

A subscripted dataframe always returns another dataframe. The default output for a dataframe is to print it if it is just a vector (one column) and otherwise to summarize the rows and columns. Hence the above output the data, but “df.Sex.Dose” will just give you a summary, but “pretty(df.Sex.Dose)” will output a formatted display. Another way to see everything is to use the “+” notation. + converts a dataframe to a numerical array, so try “+df.Sex.Dose”. If we want polynomial terms we can do “df.poly{‘Dose’,’Died’,2}”. Note when column subscripting needs parentheses, it uses the curlybrace, saving parentheses exclusively for row subscripting.

Row subscripting use the “()” notation instead of the “.” used by columns. If we had rownames we could say df({‘rowname1’,’rowname2’}) but we don’t. Instead try df(1:3). Of course “pretty(df(1:3))” or “+df(1:3)” is more interesting. Boolean subscripting is also supported: “pretty(df(+df.Dose>10))”

Row and column subscripting can of course be combined: “pretty(df(1:3).Dose.Sex)”

You can also do assignment on a dataframe. The Died column has number of deaths out of 20, lets convert this to a percent:

+df.Died/20; #oops doesn’t go anyway – note need the “+” to do arithmetic.

df.Died=+df.Died/20;

Transformations are also allowed. For example Dose may do well on a log transformation. The “transform” function returns a new df, so if we want to keep the transform around, we have to assign it:

dft=transform(df,’Dose’,’log’)

Now try pretty(dft) and +dft – they diverge + gives the transformation while pretty ignores it. Note if you type simply “dft” the transformation is remembered and reported. You can also do “assq” for arcsine-squareroot and “logit” for logistic transformations. For log transforms with a zero you can add a constant, dft=transform(df,’Dose’,’log’,1,’Died’,’assq’) will add 1 to the Dose column, then log transform it and do an arcsine-squareroot transform on Died (which is an appropriate transformation on percentages.

Now for some statistics. The simplest is to type “summary(df)” Note how it reports the mean, median, min, max, skew for continuous variables and reports the N and % in each category for discrete variables. Note how it automatically detected the type of variable!

Now for a little graphics; type “plot(df)”. This gives you a plot of each variable vs. each other variable. Histograms run down the diagonal. Now try “plot(dft)” – note how the relationships are nice and linear! A related view is “corrcoef(dft)” which gives a visual representation of correlation (green=positive, red=negative, big = large, small=low) with ‘*’ reporting significance in the usual way.

However, not all variables are equal. We expect Died to be a function of Sex & Dose, so try “plot(dft.dep{‘Died’})” This plots the dependent variable (specified to be “Died” by this syntax) against all independent variables. By default all variables are selected so in this case dft.dep{‘Died’} is the same as dft.dep{‘Died’}.Sex.Dose. Of course we could just run “plot(dft.dep{‘Died’}.Dose)”.

We really want formal statistics though. Type

m=regress(df.dep{‘Dose’}.const) #adds a constant to the regression

Note: dep and const keep all other variables as independent. We have created a model object here named “m”. We also get a text summary of the constant, their confidence intervals & t-statistics, etc We can also do the following:

plot(m)

residplot(m) #gives 3 common diagnostic plots for analyzing the residuals

degfreedom(m) or df(m), r2(m) #reports basic statistics

yhat(m),resid(m),yact(m) #returns the predict, residual and actual y values

You can also do a prediction

pred(m,dataframe({'Sex','Dose'},2,log(1+10)))

pred(m,[2 log(1+10)]) # if we’re lazy and sure we have the order of variables right

If you’re really lazy and want a gui, just use “~” and type “~df”. In particular if you type “regress(~df)” you will get a GUI that lets you pick the dependent variable, transform independent variables and pick the independent variables. Useful if you have dozens of columns in your dataframe.

Now, if you have MatLab’s stats library you can do two other types of models: logistic and CART (tree). Just type

m=logit(df.dep{‘Died’}.Sex.Dose) #don’t need the logit transformation for the #logistic regression

m=tree(dft.dep{‘Died’}.Sex.Dose) #transformations don’t matter for tree either

Now almost all of the functions given for m above (plot, yhat(m), etc) all work on these model objects as well.

