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A mini diversion –kinds of numbers 
In general we will deal with three types of numbers: 

∇ - the real numbers including irrational numbers 
∧ - the integer numbers {0, ±1, ±2, …} 
� - a finite, unordered set (e.g. carnivore, omnivore, herbivore) 
 

The first two sets are infinite while the last is finite. Notice that the "size" of the first two are different infinites. The size 
of ∧ is called "countably" infinite, while the size of ∇ is called uncountably infinite. Believe it or not it can be 
mathematically proven that countably infinite is smaller than uncountably infinite 

 
The first two sets are also ordered (3<4 means something) and metricized (the distance between 3 and 4 is well defined 
and in fact can be meaningfully said to be the same as the distance between 9 and 10) 

 
We will sometimes take modifications on ∇ and ∧ as follows: 

∇+ and ∧+  indicate the non-negative ( ≥0 ). Often the + notation means strictly positive, but not here. 
 
∇2 and ∧2 indicate the 2-dimensional sets  — ∇2 is the real plane of high school geometry and calculus while 
∧2 is a 2-dimension lattice (grid). The obvious generalization to n-dimensions (∇n) is also used. 
 

Why belabor this? Because it is a critical modeling decision that drives what tools you can use. 
 

Overview - what a state space model is 
 
A state space model is the central concept in many areas of applied mathematics and certainly in ecology and 

evolutionary biology. 
 
A state space model shows how a system changes over time. 
 
A state space model has five parts: 

1. State variables 
2. Exogenous input 
3. Transition rule 
4. Transition parameters 
5. Initial conditions 

The state variables are a set of measurements or quantities that "fully" describe the system. It may be a single 
number or a vector (a set of numbers). The vector of numbers might be indexed by some index (such as spatial 
position). 

The exogenous input is a set of measurements which are not affected by the system (state variables), but 
which affect the state variables. 

The transition rule tells us what the system (state variables) will be at a future point in time given the current 
value of the state variables and the exogenous input. 

The transition parameters are slight variations in the model – they are constants in the transition rule 
The initial conditions tell us what the state variables were when they started 
 
A model is a fully specified state space system (i.e. all 5 of the above). 
 



A simple example is a competition model. 
State variables 2 position vector (N1,N2 ) giving the population densities 

of species #1 and #2 at a point in time 
Exogenous input could be a 2 position vector (P,T) giving the number of 

predators (who mostly feed on other things and hence 
don't fluctuate with the N's) and the temperature. Note 
we need to know how these vary over time 

Transition rule A function (N1,N2) at time t+1 = f(N1,N2,u(P,T)) at time 
t – e.g. the Lotka Volterra equations modified to include 
effects of T & P 

Transition parameters parameters in the L-V equations, eg carrying capacity, 
K, and  competition coefficients α  

Initial conditions The # of N1 and N2 at time t=0 
 
 
Other examples of state systems include: 
population genetics (the proportion of alleles is the usual state variable) 
physiological models (energy reserves might be the state variable) 
 

Note that the state variables can be: continuous or discrete, scalar or vector, indexed or not 
The exogenous input can be: continuous or discrete (or absent in which case it is called an autonomous system) 
The transition rule can be: discrete (map time t to t+1) or continuous (map t to t+dt - i.e. dN/dt), deterministic or 

stochastic 
 
In general, models are more complicated to solve if: 
there are more: 
 state variables (or indexed) 
 exogenous variables (none is easiest) 
 transition parameters (none is easiest) 
and transition rules are: 
 deterministic (non-random) 
 linear 
 depend on the state of the system at only the immediately prior point in time (i.e. Markov, not time-

delay or integro-differential) 
 

 Deterministic rule Random Rule 
 Discrete time Continuous time Discrete Time Continuous Time 
Discrete States N/A N/A Markov Processes on 

� and ∧  
Continuous time 

Markov Processes on 
� and ∧  

Continuous States Difference equations Differential equations Noise processes Diffusion equations 
Stochastic differential 

equations (SDE's) 
 
NB: the mathematical machinery does not exist to handle all combinations.  
thus the exact specification of the state space model is often chosen for mathematical convenience 



Subject Matter 
 

 
 

Calculus "review" 

 a bestiary of functional forms - how to find a function that has the shape you want 
Functions map points from one space to another. The key criteria is that from any point, it only maps to one point. If 
this is not true it is a relation, not a function. The converse is not true (more than one point can be mapped to a single 
point). If this occurs, the function is not invertible. As a notation we often write something like f:∇2 → ∇3 when it maps 
points from the real plane to 3-D space. 

 
Broadly speaking we will look at two aspects of functional forms: 

shape – the overall shape 
speed – how fast it moves to where its going (∞ or asymptotes) 

In particular there are two possible speeds: 
� arithmetic (aka polynomial) – these functions are formed by +,-,×, ÷ and xc 
� geometric (aka exponential or non-polynomial) – these functions are often transcendental 

(meaning they use the exponential — ex or log or sin or cos functions) but also cx works 
in general, geometric functions get there faster 
 

Calculus Linear Algebra Probability Math: 

Modeling 
Tools: 

Deterministic 
Dynamical 
Systems 

Random 
Dynamical 
Systems 

Static 
Systems 

Description 
of Complex 

Systems 

Domain: Ecology Evolution 
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Table 1- In both pictures, the arithmetic function( x2) is the dashed line, and the exponential function 
(.001exp(.001x)) is the solid line. Note that even though the x2 function is given quite an advantage in terms of 
parameters, the exponential catches up. 

Polynomials 
f(x)=anxn + an-1xn-1 + … + a1x + a0 
Polynomials are simple and well behaved. The degree of the polynomial is the highest exponent (n). An n-

degree polynomial has n-1 humps or changes in direction and n roots (crosses X-axis). 
 

Rational functions 
Rational functions are the ratio of two polynomials.  
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A few things to note: 

� The first two functions are a subclass of rational functions called hyperbolics where the numerator is 1 (or 
some other constant) 

� Increasing the degree of the denominator polynomial in a hyperbolic function just makes it closer to a 90 
degree turn 

� The third function is the famous Michaelis-Menton equation and it asymptotes to a line. In general if a M-
M equation is in the form ax/(b+cx) then the line will asymptote at a/c and it will be half way to the 
asymptote at b/c. 

� The fourth function is sometimes called a Hill function (with the x2 terms replaced by xn). It is similar to the 
M-M but it asymptotes much faster and is now somewhat sigmoidal. 



Power Law 
The power law f(x)=axb is central in biology. The coefficient a determines the behavior near 0, but the 

exponent b, determines the long term behavior and whether it is convex or concave. 

 

Exponential functions 

 
� Recall that the exponential function (1st picture) grows faster than any polynomial function, but that the 

geometric function (3rd picture) (cx )  behaves just like the exponential function ( ex ) 
� The exponential function always has an asymptote at the X-axis – whether at asymptotes at +∞ or –∞ 

depends on whether there is a –x or +x 
� The log function is the inverse of the exponential function. It has a vertical asymptote at the Y-axis but no 

horizontal asymptote (it ends up at (∞,∞) ) 
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Trigonometric functions 
Aside from exponentials, trigonometric functions are the other commonly encountered transcendental 

functions (can't be written as ratios of polynomials). 

r 
r sin θ 

r cos θ 
θ 

 
 

Sigmoidal 
Sigmoidal or S-shaped functions have two horizontal asymptotes. They can be obtained using either rational or 

several types of transcendental functions. 
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• The first is rational and sometimes called the Hill function, the 2nd and 3rd are transcendental based on the 

exponential function and called the logistic and Gompertz functions respectively, the 4th is transcendental 
based on trig functions. The 5th is trivial but is the limit of the other functions as they get steeper.  

• The Hill and Gompertz functions are asymmetric about the inflection point, while the logistic and arctan 
functions are symmetric. 

• The 6th is of course not a sigmoidal function but is sometimes called a delta function – it is the derivative of the 
step function. It also has the property that ∫f(x)δ(x-x0)dx=f(x0). 

making functions dance – how to modify them 
To stretch along x axis y=f(a*x) 
To shrink along x axis y=f(a/x) 
To shift along x axis y=f(x-a)                (a>0 shifts right) 
To stretch/shrink along y axis y=a*f(x) 
To shift along y axis y=a+f(x) 
to flip about y=x line x=f(y)   or y=f-1(x) 
to flip about x-axis y=f(-x) 
to flip about y-axis y=-f(x) 

 
For example compare: 
y=x2 vs. y=3(x-2)2+5 
The second curve should be shifted right by 2, stretched up by a factor of 3, and shifted up by a factor of 5 
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also note that the order matters – reflecting about the x axis and then shifting ( f(-x-a) ) is not the same as 
shifting and then reflecting about the x axis ( f(a-x) ) 
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 the top 10 things you need to remember from 1st year calculus 

1. Derivative=slope - A derivative is the slope of the line tangent to the function 
dy
dx  

 
2. Differential=rate of change in variables – A differential represents how much y changes with a change in x: 

dy=df(x)dx. Note that for infinitesimally small dx, this is completely accurate, as dx gets bigger, this becomes 
less accurate (in fact it is a first order or linear approximation). 

3. Derivatives and differentials are defined at a single point, but if we use this definition at every point, we get a 
new function. This is the derivative of f(x) and is denoted f'(x) 

4. Simple rules for taking derivatives are: 
f(x)=c f'(x)=0 
f(x)=ax f(x)=a 
f(x)=xn f'(x)=nxn-1 
f(x)=exp(x) f(x)=exp(x) 
f(x)=ln(x) f(x)=1/x 
f(x)=g(x)*h(x) f(x)=g'(x)h(x)+g(x)h'(x) 
f(x)=g(h(x)) f'(x)=g'(h(x))h'(x) 
f(x)=1/g(x) f'(x)=-g'(x)/g(x)2 

 
5. Derivatives can be taken of derivatives. This yields second derivatives and so on. A second derivative tells 

how fast the slope is changing. A positive second derivative means the slope is increasing  (like the right half 
of the function above) and hence is concave up. 

6. An integral is an antiderivative 
7. An integral is an area under a curve 
8. An integral is an infinite sum (uncountable) 
9. The geometric series:  

(1-r)(1+r+r2+r3+ … +rn) = 1-rn+1  ⇒ ∑
i=m

n
cri = 

crm (1-rn+1)
 1-r   = 

crm

1-r if n=∞  and |r|<1 

10. The Taylor expansion: 

f(x) = ∑
n=0

∞
fn(a)
n! (x-a)n  ≈ f(a) + f'(a)(x-a) + f''(a)(x-a)2/2! + …    

approximations - how do they do that and should they get away with that? 
The Taylors series provides the means for common approximations. For example: 
ex ≈ 1+x+x2/2+x3/6+ … ≈ 1+x for x ≈ 0 
ln (1+x) = x – x2 /2 + x3/3 – x4/12 + … ≈ x for x ≈ 0 
 
in a more complicated vein: 
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why do people do this? – as always to solve problems that otherwise wouldn't be solveable 
is it justified – it depends a lot on two things: 

• how close x is to a (if a is 0 then it often works for x's of .1 or .2 (.1*.1=.01 which is 1/10 the size of 
.1) 

• how many terms are included – often just the constant and first order (x) term are included but it 
becomes more and more accurate as more terms are included 

Linear algebra - a geometric/visual approach 
A study of a certain subset of transformations. 
Transformations are functions but conceived of as mapping one set to another set (e.g.  to ) 

Types of transformations 
There are a number of categories of transformations of interest to mathematicians: 

Category 
Functional property Preserves 

Rubber-sheet topology Continuous function Dimensionality + # of holes (donut=coffee cup) 
Diffeomorophisms “ + differentiable “+ corners and kinks ( |x| ≠ x2 ) 
Affine maps AX+b “+straight lines 

Preserves dimensionality if A non-singular 
Linear maps AX “ + origin 
Orthogonal maps AX, A orthogonal “ + distance + angles 

 
Linear algebra is the study of, no suprirse, linear maps. 

Types of linear transformations 
For the moment forget matrices. We’re just going to look at maps of the real plane to itself. We’ll look at the 

types of visual transformations that are possible. To do this, we are going to follow the fate of a figure and see what it 
looks like under different transformations: 
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Combinations: 
e.g. rotate-stretch 
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Combination: e.g. orthostretch-reflection 
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It turns out no other type of transformation is available which preserves lines and maps the origin to the origin.  
 

It is now time to introduce the concept of eigenvalues and eigenvectors. Its quite simple: 
• Eigenvectors are the axes of the transformation (stretching, reflecting) 
• Eigenvalues are the extent of the transformation along the corresponding axis (e.g. >1=stretch, <1=shrink, -1 = 

reflection) 
 
It is a little more tricky to imagine what the axes are for rotations and shears. 
For rotations, you get conjugate pairs. The eigenvalues are: a±bi (a represents the degree of shrinking/expanding that 

happens) and the eigenvectors are [a ±bi]; 
For shears, you get one eigenvector in the direction of stretch. You get another non-eigenvector perpendicular to this. 

This leads to a redundant eigenvalue which.  
 
Lets look at the above transformations with their eigenvectors mapped on. Recall that eigenvectors are only a direction, 

they can be of any length. 
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Combinations: 
e.g. rotate-stretch 
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Combination: e.g. 
orthostretch-reflection 
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basis inner (dot) products (distance and angles), embeddings and projections, 
determinants 

Before moving on to matrices, we need a few more concepts: 
The span of a set of vectors is the subset of all points that can be reached by linear combiantions of the vectors 

(a1x1+a2x2+ …) 
If you add a vector to a set of vectors and it is already in the span of the previous vectors, then the vectors are not 

linearly independent. 
A set of linearly independent vectors that span the whole space is called a basis. This means that any vector can be 

written as a linear combination of the basis vectors, and hence we can use coordinate notation to describe a 
vector: v=(n1,n2, …)B. Note that this coordinate notation is dependent on the basis. The same vector has a 
different coordinate notation under a different basis. 

The number of vectors that make up a basis is constant (the vectors may change but the number of them stays constant). 
This number is called the dimension of the space. 

Example: in the above figures, the pair of double lined vectors make up a basis in each case. The entire ∇2 
plane is spanned by the pair of vectors. And conversely, neither vector is a linear combination of the other vector so 
they are linearly independent. Thus, happily, ∇2

 is 2-dimensional! Note that any third vector can be written as a 
combination of the basis vectors. Thus the line that goes into the top left quadrant can be written as (-1,1) for the first 
basis or (-2,1) for the second basis. 

Note that our intuition tells us that the first basis is somehow cleaner. The two key facts about the first basis is 
that the vectors are orthogonal (perpendicular) and of unit length. A basis with these two properties is called 
orthonormal. To see if a basis is orthonormal, we need to know how to define angles and distances. To do this, we 
need to introduce the concept of the inner product. The inner product is a function that takes two vectors as input and 
returns a single, scalar number. It is often denoted as: (x,y). In ∇n the obvious inner product is x1y1+x2y2+… also know 
as the dot product, denoted: x•y. In general: 

• iff (x,y)=0 then x is perpendicular (⊥) to y 
• the length of x, denoted ||x||, is defined as √(x,x) 

for the dot product in ∇n, we have x • y =  ||x|| ||y|| cos θ  which fits into the above general rules. Thus we now have a 
handle on distances and angles. 

The next two concepts we need to introduce pertain to linear transformations when they go from one space to 
another that have different dimensions. An embedding occurs when a space of lower dimension is mapped into a space 
of higher dimension (e.g. ∇2

 Æ∇3 ). The transformation can only map into the higher dimensional space a set with 
dimension of the lower dimensional space. Thus in the example, every transformation would consist of a plane 
embedded in 3-D space. 

(-1,1) 
(-2,1)



A projection is when an object that is outside of a lower dimensional surface, is mapped onto the "best" 
representation of that object in the lower dimensional surface. In the picture above, the solid vector lies in 3-D space. It 
is projected onto a 2-D plane. In this case, the "best" projection is the one that leaves only a line ⊥ to the plane 
difference between the object and its projection. One general formula for the projection of a line, x, onto another line, y, 
is: 

 (x,y) y / ||y|| 
 
The final concept which we wish to describe geometrically is the determinant. The determinant is a single 

number that quanitifies how much space is stretched or shrunk by a transformation. For example if it is stretch by a 
factor of three in one direction and shrunk by a factor of ½ in a ⊥ direction, then we would want the determinant to be 
3/2. Note that this is simply the product of all the eigenvalues. In general, this works. The determinant is a measure of 
how much space is shrunk/expanded by a transformation and is given simply as the product of the eigenvectors. 

How this maps to matrices 

Matrices as basis changes 
You will recall that in the example of bases, the representation of a vector was different depending on the 

basis. This is inconvenient – it would be nice to be able to switch rapidly between coordinate notations for different 
bases. It turns out you can. Simply create a matrix that describes the source basis as column vectors in the destination 
basis. Then matrix multiplication converts bases! 

In our example, lets take the source basis as the basis on the left. Recall that our sample vector was denoted (-
1,1) in the source (left) basis (and as (-2,1) in the destination – right – basis). Note that the source basis (on the left) can 
be written as [1 0] and [-1 1] in the destination basis. Thus if we use the matrix: 

A= 






 −
10
11

 

as a conversion matrix we can switch between the two basis. And indeed if  we take the matrix times times the vector 
notates in the source basis (-1,1) we get (-2,1) which is the vector in the destination basis! To go backwards, we  use the 
same algorithm in reverse (write a matrix of column vectors of the source – right – basis in terms of the destination – 
left – basis). If we do this, we get: 

B= 







10
11

 

We note that if we take AB (matrix multiplication), we get the identity out and hence these two matrices are inverses of 
each other. 

Matrices as representations of tranformations 
A more interesting use of matrices is to represent transformations. Recall that we studied linear 

transformations as abstract, geometrical objects. This is intuitive but imprecise. To make things precise we need to 
write our linear transformations down as combinations of numbers. It turns out that writing a transformation from ∇n Æ 

∇m as a mXn matrix works well. Then the vector, X, is mapped into AX (where we use standard matrix arithmetic). 
The problem is, as we know, that there are many different basis. Which basis to write a transformation relative 

to?? Well the "obvious" and "natural" basis is to use the eigenvectors as a basis. Then our matrices will take a 



particularly simple form – a diagonal matrix with the eigenvalues down the diagonal. There are two exceptions to this. 

Rotations will not be a 2X2 block of values representing the angle of rotation 






 −
θcosθsin
θsinθcos

and shears will have 

the single eigenvalue, λ, repeated on the diagonal and with the value 1 on the super diagonal 







λ

λ
0

1
. 

This makes it very easy to convert a transformation into a matrix, but there are two problems. First it requires us to use 
a different basis for every transformation. Second, it doesn't tell us what basis is used. Thus, we usually choose to write 
our transformations as matrices relative to the standard basis. This means we must do a change of basis between the 
standard basis and the eigenvector basis. Recall from above that this simply requires that we write a matrix of column 
vectors, each column vector containing the destination basis (eigenvector) in terms of the standard basis. Thus, every 
transformation can be written as: 

V-1 J V 
where J is a matrix in Jordan normal form (i.e. it has eigenvalues down the diagonal and in cases of shear or rotation it 
has a number on the super/sub-diagonal or superdiagonal respectively). V is a matrix consisting of the eigenvectors 
written in the coordinates of the standard basis, and V-1 is the inverse matrix that takes from the basis of the 
eigenvectors back to standard basis. Thus with matrix multiplication, AX, we take a vector in standard basis, convert it 
to eigenvector basis, apply a simple, nearly diagonal matrix to it that performs stretches, reflections, rotations, and 
shears, and then take this new point and convert it back from the eigenvector basis to the standard basis. 

This is most obvious in the example of the non-orthogonal stretch where we stretched by a factor of 1.5 and 
shrunk by 0.5 in the directions of (0,1) and (1,-1)  respectively. Lots follow our cookbook and see if this gives us the 
right matrix. We know how to write the matrix that goes from the eigenvector basis to the standard basis! 









−11
10

 

To get the matrix that goes from the standard to the eigenvector basis, we need to right the standard basis in the 
eigenvector coordinates. Or we could just take the inverse of the above matrix. Either way we get: 









01
11

 

The diagonal matrix has stretches by 1.5 and 0.5 so we get: 









5.00

05.1
 

Putting this all together, we get: 

























−

=







01
11

5.00
05.1

11
10

5.11
05.0

 

And, indeed, the matrix on the left performs exactly the non-orthogonal stretch we expected. 
 

Here the matrices that do all of the transformations described above 
Identity  

1 0 
0 1 
   

Rotation  
Cos π/4 -Sin π/4 
Sin π/4 
 

Cos π/4 
 

Orthogonal-Stretch  
2 0 
0 
 

0.5 
 

Reflection  
-1 0 
0 1



  
Non-Orthognal stretch  

0.5 0 
1 
 

1.5 
 

Shear  
1 1 
0 
 

1 
 

Combinations: 
e.g. rotate-stretch 

 
√2 -√2 
√2 
 

√2 
 

Combination: e.g. 
orthostretch-reflection 

 
1 2 
2 
 

1 
 

 
 
How does the above generalize to n-dimensions? Fairly simply. Rotations always take place in a two 

dimensional plane. Shears can take up 2,3, or n dimensions. Thus to write an n-dimensional matrix, we need to see 
which directions are stretch/shrunk/refelected which planes are rotated, and which dimensions are sheared. We can then 
write this as a matrix V-1 J V where J is in Jordan normal form (diagonal with eigenvalues/stretch factors on the 
diagonal and 2X2 blocks for rotations and 1's in the superdiagonal for shears. Thus a potential 4-D transformation 
would be: 

[ ] [ ]4321

000
100
000
000

4321

3

3

2

1

1 vvvvvvvv



















−

λ
λ

λ
λ

 

where [v1 v2 v3 v4] is a matrix with column vectors. This transformation will stretch by factors λ1 and λ2 in directions 
v1 and v2. It will do a shear in direction v3 by amount λ3 taking along direction v4. 

What they usually teach you in linear algebra 
Most of linear algebra is taken up with teaching you how to multiply matrices, take their determinants and 

their inverses. Here we take the position that computers do this numerical computation. All that you need is to 
understand the concept. 

Several things they teach in linear algebra become trivial if you understand the above: 
matrix A is invertible ⇔ det(A) ≠ 0  (this means no eigenvalues are 0, so no dimension is collapsed, so it is a 1-1 map, 

so it is invertible) 
an orthogonal matrix is one whre the the eigenvalues are all ±1 ⇔ A-1 = AT 
a symmetric matrix is one where A=AT and it is always an orthogonal stretch so it always has orthogonal eigenvectors 
an  eigenvector has the property that Ax=λx ⇔ Ax-λIx=0 ⇔ (A-λI)x=0 ⇔ det(A-λI)=0 ⇔ λ is root of characteristic 

polynomial 
a positive definite matrix is one where x'Ax ≥ 0 ∀x ⇔ λi ≥0 ∀i and similarly for negative definite matrices 
the solution to Ax=b can have one of three outcomes: 
1) b is in the span of the columns of A and A is non-singular: there is exactly one solution x=A-1 b 
2) b is in the span of the columns of A and A is singular: there are an infinite number of solutions 
3) b is not in the span of the columns of A: no x solves the equation 
All cases are covered by using the singular value decomposition: 

AAT   is a symmetric matrix and hence has orthogonal eigenvectors (as does ATA) 
Let U be the matrix of the eigenvectors of AAT, V be the matrix of eigenvectors of ATA, and λ=√eigenvalues 

of ATA=eigenvalues of ATA. Then: 
A=UΛVT and let AG = V 1/Λ UT  
if A is invertible, AG=A-1  



AGb gives an optimal solution in all 3 cases 

the 15 minute version of 2nd year calculus 

f: ∇n Æ ∇  
These functions assign a single value to every point in ∇n  (such as temperature to every point on the surface of 

the earth ∇2 ). They can be though of as contour maps (assign height to every point). The key question is what 
constitutes a derivative? 
One valid concept is to take the derivative in the principle directions: x,y, etc. This is called partial derivatives. Hence 

∂f/∂x is the slope of f in the x direction 
Another valid concept is when you specify a direction u and then take the slope in that direction. This called a 

directional derivative 
The final valid concept is to take the slope in the direction of maximal ascent (greatest slope). This is called the 

gradient. 
To calculate the gradient we need to use partial derivatives, and in particular ∇f=[∂f/∂x, ∂f/∂y, …] is the gradient. To 

calculate a directional derivative, we need to know the gradient, and in particular the derivative in the direction 
u is given by ∇f • u  (usually u is chosen to be of unit length). 

For example take the function: f(x,y)=x2+3y2. Then: 
∂f/∂x=2x 
∂f/∂y=6y 
∇f=[2x,6y] so ∇f(0,0)=(0,0) and ∇f(1,1)=(2,6) 
The directional derivative in the direction (-1,1) at (0,0) is (0,0) while at (1,1) it is 8 (6,2)•(1,1) 

 

∂f/∂x

∂f/∂y

∇f

df(1,1;u)



Finally, what works as a second derivative? This is a matrix called the Hessian: 























∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

...

...
yy

f
xy

f
yx

f
xx

f

 

Note that ∂f/∂x∂x is usually written as ∂2f/∂x2 and that since under most conditions ∂f/∂x∂y = ∂f/∂y∂x the matrix is 
usually symmetric. The determinant of the hessian can tell us much about the behavior of a function 

The generaliation of Taylor's theorem to f:∇nÆ∇ is: 
f(x+h)=f(x)+∇f • h + 1/2 h' H h + o(h) 

Note this shows us that for a critical point to occur (maxima, minima, saddle point) the gradient must be zero (i.e all 
partials must be zero) and the the Hessian must be positive or negative definite to give a minima or a maxima 
respectively. 

f: ∇n Æ ∇m 

There is one meaningful derivative, defined in terms of partials and it is called the Jacobian: 

J=



















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



∂
∂

∂
∂

∂
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 why a Taylors series is really a linear algebra problem 
So far we have only talked about systems where the dimensionality is finite? So what – why would you want 

an infinite dimensional system? It turns out that the set of all functions makes a fairly good infinite dimensional linear 
algebra system. There are several bases for the set of all functions: 

xn  is a basis but not orthogonal 
ansin nx + bncos nx is an orthogonal system for functions that are periodic (or defined on the finite interval [0,2π] 
enx is a basis and orthogonal but may be uncountably infinite (the other two are countable infinite, i.e. n ∈∧ ) 

In all above the systems, the inner product function is an integral. 
 

an application of linear algebra to state space models 
Suppose your state space is xt+1=Axt. Then by simple recursion you can show that xt=Atx0. Then, assuming A 

is diagnolizable (i.e. no shearing), we can write A=V-1DV. Then At = V-1 Dt V and Dt
  can be calculated simply by 

raising each diagonal element to t. Thus we have a simple means of calculating. 
However, suppose what we're really interested in is the long term behavior of the system (t Æ ∞). Recall that 

each eigenvalue/vector pair has Ax=λx (i.e. behavior on an eigenvector axis is simple stretching by the eigenvalue). 
Now take any start point x0. Write it in terms of the eigenbasis of A: x0=c1x1+c2x2+ … where the xi are eigenvectors and 
the ci  are the coordinates of x0 in terms of the eigenbasis. Then Atx0 = c1λ1

tx1 + c2λ2
tx2+… This is called the spectral 

theorem. As t gets large, all terms will be small compared to the one with the largest λ, say λ1. Thus as t Æ ∞, xt goes to 
a multiple of x1 and grows in each time step by a factor of λ1. 

 



Deterministic dynamical systems 

solving differential equations (the 15 minute version and why you don't need more) 
So, we have a state space model that specifies our problem using a deterministic rule. One approach would be 

to solve the state space model so that we know behavior at every point in time. This would take the form xt=f(t,x0,p). 
This means we can calculate x at any time t if we know the initial conditions, x0, and the parameters p. 

A simple example is the logistic equation: 
dN
dt =rN



1-

N
K  

we will solve this using a technique known as separation of variables: put all dN and N's on the left and all dt's and t's 
on the right: 

dN
rN(1-N/K)=dt  

in theory, all we need to do to solve this is to take the integral on both sides, but to find the integral on the left, we need 
to rewrite it as: 

dN
r 



1

N+
1

K-N  = dt 

which gives: 

⌡
⌠ 1

rNdN+⌡
⌠ 1

K-NdN=⌡⌠dt 

which gives: 
ln N

r  + -ln(K-N) + C = t  ⇒ 
1
rln

N
K-N = t + C ⇒ 

N
K-N=ert + C  ⇒  N=Kert+C -Nert+C ⇒ 

N(1+ert+C)=Kert+C ⇒N=
Kert+C

1+ert+C ⇒  N=
K

1+ce-rt  (multiply top and bottom by e-(rt+C) ) 

note that the C comes from integration (antiderivatives lose a constant, so we have to add it back in when we integrate. 
Also note that we have been somewhat casual with the exact meaning of C, it keeps changing as we manipulate the 
equation, all really have kept true is that it is some constant independent of N,t. Now we solve by using the initial 
condition: at t=0, N=N0: 

N0=
K

1+c ⇒ c=
K-N0

N0
 

We now can predict Nt at any time t if we know N0, K and r 
 
Very briefly, we can also solve linear systems such as: 
y'' + 3y' +2y=0 

we just turn this into: 
D2-3D+2=0  where D=d/dt 

we know the solution here: 
D=-1 or -2 

so the solution must be of the form 
C1e-2t+C2e-1t

 
You can check that this solution works. The values of the constants (Ci) are determined by initial conditions. 

Graphing deterministic systems: 

1-D discrete model: Nt+1=f(Nt) 
These are also described in the form Nt+1=Nt+f(Nt). This makes it easier to translate to continuous time (the 

same function, f, can be used, but mathematically, the other form is more tractable. 
For a 1-D discrete model, we plot the return map – Nt+1 vs Nt. We can predict what will happen by cobwebbing 

which is just really a graphical shortcut for the math. 

Figure 1 – Discrete logistic equation 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1-D continuous model: 
dN
dt  = g(N(t))  

For a 1-D continuous  model we plot something similar to the return map but which is technically not the 
return map which we will call increment map: 
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2-D continuous: 
dN
dt  = G(N(t))  

No plot is useful for 2-D discrete or 3-D and above. However, another plot can be useful for a 2-D continuous 
system. This is called a phase plane. It is a generalization of the increment map. A straight generalization would end up 
as a 3-D plot the x & y dims would be the two variables and the Z dimension (out of the page) would be the increment 
(dN/dt).  However we typically drop the 3rd dimension. On this we can plot several things: 

• isoclines – lines where there is no increment for one variable or the other 
• positive and negative increment regions for a variable (separated by the isocline) 
• flows – the direction of flow from a given point 
• trajectories – an actual path 



 

asymptotic behavior - stability analysis, chaos and everything in between 
However, there are several problems with this. First solving this equation was very messy and it is very simple. 

Solving more complicated equations is often impossible. Second, it may be useful predictively, but it is not useful 
qualitatively – it is not told us in general what to expect regardless of the exact values of r, K, and N0 (although simple 
inspection does show that as tÆ∞ , NÆK). 

What is usually much easier to do and sometimes more useful is to do asymptotic analysis. This involves 
predicting what happens in the long run (as tÆ∞ ) 

Asymptotic analysis is organized around 4 types of organizing structures and 3 types of approaches. 
There are four possible behaviors in the long run: 
� Point equilibrium – the system moves to one point and stays there 
� Cycle  - the system moves to a repeating cycle 
� Quasi-periodic – the system moves to an almost repeating cycle 
� Chaos – the system moves to a finite region and bounces around in a seemingly random fashion forever 
� Goes to infinity – is another option. This is not really of the same status as the above 4, but many systems 

do this 
Another name for these organizing sets is the α-set or ω-set. The ω-set is the limit set that the system spends its time 
getting infinitely closer to (for all but an insignificantly small amount of time where transient behavior happens). The α-
set is the reverse – it is the ω-limit set that you get if you take a point and run the system backwards around a repellor. 
 
The above 4 organizing structures all have the property that if the system starts there, the system will stay there. 
However, to be of interest we need to see what happens in the nieghborhood of the organizing structure. A point that 
starts near the organizing structure can do one of three things: 

move (exponentially fast) towards the structure 
move (exponentially fast) away from the structure 
stay exactly the same distance away (called neutral) 
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 This behavior can happen in each eigenvector direction (one for each dimension of the space – e.g. 3 direction for the 
3-D space). Thus we can have a system that moves toward in two directions and moves away in one direction. The 
directions where it moves towards is called the stable manifold,  the directions in which it moves away is called the 
unstable manifold and the directions where it doesn't move is called the center manifold. Every eigenvector must be a 
member of one of these manifolds. If all directions are part of the stable manifold, it is called an attractor. If even one 
direction is part of the unstable manifold, it is called a repeller. If one direction is stable and one is unstable, it is called 
a saddle. 

Point equilibria 
This is the most boring but most well understood case. Here the trajectory ends in a point. To find such points 

we have either: 
N* = f(N*) or dN\dt|N* = g(N*)=0 

The normal question is whether the point is attracting, repelling, or a saddle. We have two methods for studying this. 
Lyupanov's 1st method 
We can linearize around the equilibrium point N*. We use the Taylor's series expansion to linearize around the 

equilibrium point.  
n=N-N* (i.e. n=deviation from equilibrium) 
dn/dt=g(N*+n)=g(N*)+ (Jg|N*) n +  o(n)  where J is the Jacobian of g or G evaluated at N=N* 

There is a theorem which shows that no matter how non-linear the system is, around the equilibrium it behaves the 
same as the linearized the system.  

so dn/dt=g(N*)+ (Jg|N*)n but g(N*)=0 if it is an equilibrian 
so dn/dt=Jn 
has simple solution: n=eJt or N=N*+eJt 

Now this system has a simple solution N(t)=N*+eJt . The behavior of this system is in turn determined by the 
eigenvalues of J – if they are all negative the system consists of decaying exponentials back towards N*. If they are all 
positive, the system consists of increasing exponentials away from N*. If they are some negative and some positive 
then there are corresponding directions where it is moving towards exponentially and directions where it is moving 
away exponentially. This is a saddle and leads to a phenomenon called a fly-by. If they are zero then they don't move 
towards or away. If the eigenvalues have an imaginary component, then there is rotation as it does it. This leads to the 
following cases: 

stable node: both (all) eigenvalues negative, no imaginary part 
unstable node: both (all) eigenvalues positive, no imaginary party 
stable/unstable focus: both (all) eigenvalues negative/positive with an imaginary part 
saddle: some eigenvalues positive and negative 
center: all eigenvalues strictly imaginary 
 
For example: take the Lotka-Volterra predator prey system: 
dV
dt = f1(V,P) = V(b-aP) 

dP
dt  = f2(V,P) = P(-d+kaV)  

V*,P* occur where f1=f2=0 
0=V(b-aP) ⇒ P*=b/a   and 0=P(-d+kaV) ⇒ V*=d/ka 
i.e. equilibrium is (b/a,d/ka) 
To see if this is stable or not we need the jacobian 
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the eigenvalues solve the equation λ2 +db = 0 or λ = 0±i√bd  
the real part of all eigenvalues is zero and there is an imaginary part – hence the system is a center 
 
Lyupanov's 2nd method 
 

sensitivity to initial conditions and parameter values 
 



what can we study if its chaotic – ergodic properties 
 

diffusion equations 
 

Random dynamical systems (stochastic processes) 

the 10 things you need to know about probability 
 

the top 10 probability distributions and how to remember them 
 

Markov models 
 

Markov Chains 
 

Counting (Poisson) and Birth Death processes 
 

Stochastic Differential equations 
 

Jump equations 
 

Static systems - easier to solve than dynamic systems 

optimization (0 players affect the system) 
 

control theory (1 player affects the system) 
 

game theory (2+ players affect the system) 
 



Descriptions of complex data 

Multivariate statistics 

Regression 

GLIM 

Neural nets 

Reduction of variables 

Principle components 

CART/Trees 

Classification 

Fractals - cutting through the (very thick) hype 
 

Timeseries data 

Chaos analysis 

Fitting non-linear models 

ARIMA 
 

Wavelets 
 



Deterministic dynamical systems 

solving differential equations (the 15 minute version and why you don't need more) 
So, we have a state space model that specifies our problem using a deterministic rule. One approach would be 

to solve the state space model so that we know behavior at every point in time. This would take the form xt=f(t,x0,p). 
This means we can calculate x at any time t if we know the initial conditions, x0, and the parameters p. 

A simple example is the logistic equation: 
dN
dt =rN



1-

N
K  

we will solve this using a technique known as separation of variables: put all dN and N's on the left and all dt's and t's 
on the right: 

dN
rN(1-N/K)=dt  

in theory, all we need to do to solve this is to take the integral on both sides, but to find the integral on the left, we need 
to rewrite it as: 

dN
r 



1

N+
1

K-N  = dt 

which gives: 

⌡
⌠ 1

rNdN+⌡
⌠ 1

K-NdN=⌡⌠dt 

which gives: 
ln N

r  + -ln(K-N) + C = t  ⇒ 
1
rln

N
K-N = t + C ⇒ 

N
K-N=ert + C  ⇒  N=Kert+C -Nert+C ⇒ 

N(1+ert+C)=Kert+C ⇒N=
Kert+C

1+ert+C ⇒  N=
K

1+ce-rt  (multiply top and bottom by e-(rt+C) ) 

note that the C comes from integration (antiderivatives lose a constant, so we have to add it back in when we integrate. 
Also note that we have been somewhat casual with the exact meaning of C, it keeps changing as we manipulate the 
equation, all really have kept true is that it is some constant independent of N,t. Now we solve by using the initial 
condition: at t=0, N=N0: 

N0=
K

1+c ⇒ c=
K-N0

N0
 

We now can predict Nt at any time t if we know N0, K and r 
 
Very briefly, we can also solve linear systems such as: 
y'' + 3y' +2y=0 

we just turn this into (we can do this if we transform into laplace space where differentiation by x = multiplication by 
x): 

D2-3D+2=0  where D=d/dt 
we know the solution here: 

D=-1 or -2 
so the solution must be of the form 

C1e-2t+C2e-1t
 

You can check that this solution works. The values of the constants (Ci) are determined by initial conditions. 

Graphing deterministic systems: 

1-D discrete model: Nt+1=f(Nt) 
These are also described in the form Nt+1=Nt+f(Nt). This makes it easier to translate to continuous time (the 

same function, f, can be used, but mathematically, the other form is more tractable. 



For a 1-D discrete model, we plot the return map – Nt+1 vs Nt. We can predict what will happen by cobwebbing 
which is just really a graphical shortcut for the math. 

1-D continuous model: 
dN
dt  = g(N(t))  

For a 1-D continuous  model we plot something similar to the return map but which is technically not the 
return map which we will call increment map: 
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2-D continuous: 
dN
dt  = G(N(t))  

No plot is useful for 2-D discrete or 3-D and above. However, another plot can be useful for a 2-D continuous 
system. This is called a phase plane. It is a generalization of the increment map. A straight generalization would end up 
as a 3-D plot the x & y dims would be the two variables and the Z dimension (out of the page) would be the increment 
(dN/dt).  However we typically drop the 3rd dimension. On this we can plot several things: 

• isoclines – lines where there is no increment for one variable or the other 
• positive and negative increment regions for a variable (separated by the isocline) 
• flows – the direction of flow from a given point 
• trajectories – an actual path 
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asymptotic behavior - stability analysis, chaos and everything in between 
However, there are several problems with this. First solving this equation was very messy and it is very simple. 

Solving more complicated equations is often impossible. Second, it may be useful predictively, but it is not useful 
qualitatively – it is not told us in general what to expect regardless of the exact values of r, K, and N0 (although simple 
inspection does show that as t ∞ , N K). 

What is usually much easier to do and sometimes more useful is to do asymptotic analysis. This involves 
predicting what happens in the long run (as t ∞ ) 

Asymptotic analysis is organized around 4 types of organizing structures and 3 types of approaches to the 
organizing sets. 

There are four possible behaviors in the long run: 
� Point equilibrium – the system moves to one point and stays there 
� Cycle  - the system moves to a repeating cycle 
� Quasiperiodic – the system moves to an almost repeating cycle 
� Chaos – the system moves to a finite region and bounces around in a seemingly random fashion forever 
� Goes to infinity – is another option. This is not really of the same status as the above 4, but many systems 

do this 
Another name for these organizing structures is an invariant set — any point that starts on an organizing structure stays 
on this organizing structure for ever. Another name for these organizing sets is the α-set or ω-set. The ω-set is the limit 
set that the system spends its time getting infinitely closer to (for all but an insignificantly small amount of time where 
transient behavior happens). The α-set is the reverse – it is the ω-limit set that you get if you take a point and run the 
system backwards around a repellor. 

These organizing sets can also be distinguished by their dimension: 
Organizing set Dimension 
Point 0 
Cycle 1 
Quasiperiodic 1,2,3,4, … 
Chaos 1.x, 2.x, …. 
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The above 4 organizing structures all have the property that if the system starts there, the system will stay there. 
However, to be of interest we need to see what happens in the neighborhood of the organizing structure. A point that 
starts near the organizing structure can do one of three things: 

move (exponentially fast) towards the structure 
move (exponentially fast) away from the structure 
stay exactly the same distance away (called neutral) 

This behavior can happen in each eigenvector direction (one for each dimension of the space – e.g. 3 direction for the 3-
D space). Thus we can have a system that moves toward in two directions and moves away in one direction. The 
directions where it moves towards is called the stable manifold,  the directions in which it moves away is called the 
unstable manifold and the directions where it doesn't move is called the center manifold. Every eigenvector must be a 
member of one of these manifolds. If all directions are part of the stable manifold, it is called an attractor. If even one 
direction is part of the unstable manifold, it is called a repeller. If one direction is stable and one is unstable, it is called 
a saddle. 

Another way to look at it is to look at whether the map is shrinking or stretching space around the organizing 
structure. This can be determined by looking at the determinant of the Jacobian. If it is <1 then space is shrinking and it 
is an attractor. 

Attractor #1 - Point equilibria 
This is the most boring but most well understood case. Here the trajectory ends in a point. To find such points 

we have either: 
N* = f(N*) or dN\dt|N* = g(N*)=0 

The normal question is whether the point is attracting, repelling, or a saddle. We have two methods for studying this. 
There are two types of stability: 

neutral stability – if the it is perturbed off the equilibrium point, it doesn't move any further away 
asymptotic stability – if perturbed off the equilibrium point, it will move asymptotically back to the point 

There are two major methods for testing the stability of a point, both due to Lyupanov. 
 
Lyupanov's 1st method 
We can linearize around the equilibrium point N*. We use the Taylor's series expansion to linearize around the 

equilibrium point.  
n=N-N* (i.e. n=deviation from equilibrium) 
dn/dt=g(N*+n)=g(N*)+ (Jg|N*) n +  o(n)  where J is the Jacobian of g or G evaluated at N=N* 

There is a theorem which shows that no matter how non-linear the system is, around the equilibrium it behaves the 
same as the linearized the system.  

so dn/dt=g(N*)+ (Jg|N*)n but g(N*)=0 if it is an equilibrian 
so dn/dt=Jn 
has simple solution: n=eJt or N=N*+eJt 

Now this system has a simple solution N(t)=N*+eJt . The behavior of this system is in turn determined by the 
eigenvalues of J – if they are all negative the system consists of decaying exponentials back towards N*. If they are all 
positive, the system consists of increasing exponentials away from N*. If they are some negative and some positive 
then there are corresponding directions where it is moving towards exponentially and directions where it is moving 
away exponentially. This is a saddle and leads to a phenomenon called a fly-by. If they are zero then they don't move 
towards or away. If the eigenvalues have an imaginary component, then there is rotation as it does it. This leads to the 
following cases: 

stable node: both (all) eigenvalues negative, no imaginary part 
unstable node: both (all) eigenvalues positive, no imaginary party 
stable/unstable focus: both (all) eigenvalues negative/positive with an imaginary part 
saddle: some eigenvalues positive and negative 
center: all eigenvalues strictly imaginary 
 
For example: take the Lotka-Volterra predator prey system: 
dV
dt = f1(V,P) = V(b-aP) 

dP
dt  = f2(V,P) = P(-d+kaV)  

V*,P* occur where f1=f2=0 
0=V(b-aP) ⇒ P*=b/a   and 0=P(-d+kaV) ⇒ V*=d/ka 



i.e. equilibrium is (b/a,d/ka) 
To see if this is stable or not we need the jacobian 
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the eigenvalues solve the equation λ2 +db = 0 or λ = 0±i√bd  
the real part of all eigenvalues is zero and there is an imaginary part – hence the system is a center 
 
Lyupanov's 2nd method 
Lyapunov provided a 2nd method for testing for stability. It is actually much more robust because it tells us 

over what domain the point attracts. His second is based on finding a Lyapunov function. A Lyapunov function is 
basically an energy function – it maps every point in phase space to  a scalar value representing energy. Lyapunovs 
insight is that if we can show that at every point the state variables go down the Lyapunov function (lower energy), then 
we must end up at a minimum of the Lyupanov function. 

The exact criteria for a Lyupanov function is: 
let N* be an equilibrium of dN/dt=G(N) and E:state space ∇ 
Then if over some region W: 
1) E(N*)=0 and E(N)>0 ∀ N ≠ N* 
and 2) d/dt E(N) </≤ 0 ∀ N ∈ V 
⇒ N* is stable/asymptotically stable 
Note that by the chain rule d/dt E(N) = ∇E(N) • f(N) 
 
Example: look at the Lotka-Volterra predator prey system: 
we claim E(P,V)=kaV-d ln V + aP- r ln P - Cis a Lyapunov function: 
the minimum of E occurs at a location where ∂E/∂P=a-r/P=0 and ∂E/∂V=ka-d/V=0 ⇒ (V*,P*)=(r/a,d/ka) 



which is identical to the equilibrium we found above – thus the minimum occurs at the right place, but it is too 
high E(V*,P*)=d-d ln(d/ka)+r-r ln(r/a) so we set C=-E(V*,P*) and we've met criterion #1.  

we also note that ∇E • f=(ka-d/V,a-r/P)•(rV-aPV,-dP+kaPV) which reduces to 0 by simple algebra  
this tells us that the state variable system stays on level surfaces of the Lyupanov function (if it had been 

negative we would have gone to the equilibrium). 
Notice that in general, fitness serves as a Lyupanov function for population genetics – at each step the 

allele proportions change to increase fitness and they stop changing when fitness reaches a local maximum. 
 
 
Graphical tests for stability: 
� for 1-D discrete – equilibrium points are where it crosses y=x line and it is stable if the slope is between –1 

and 1 
� for 1-D continuous – equilibrium points are when it crosses the x-axis andit is stable if it crosses going 

down (f'(x*)<0) 
� for 2-D continuous – equilibrium points are where the isoclines cross and you can often tell if it is stable by 

looking at the flow 
These tests match the algebraic methods 

Attractor #2 - Cycles 
The man result on cycles is the Poincare-Bendixson theorem – in 2-dimensions if a trajectory is bounded 

(never goes to infinity) and it doesn't go to a fixed point, then it must cycle (this applies only to continuous systems). 
This has two results: first it bans chaos in continuous systems until there are at least 3 dimensions (and chaotic 3-d 
systems are knonw). Secondly it gives us a way of proving a limit cycle exists even if we can't write an equation for it.; 
For example with the Lotka-Volterra predator-prey system all we really had to do was show that the system was 
bounded and that the equilibrium point was unstable to know that there was a limit cycle. 

A system has a cycle (is periodic) when there exists a T such that Nt+T=Nt for all t 
In discrete maps we can test whether a cycle is attracting or repelling by looking at a compound map. In 

particular, if we are looking at a k-cycle, we can look at fk(x)=f(f(f(…(x)))). This compound map will have a single 
fixed point representing the whole cycle. If this fixed point is stable, then the cycle is attracting. For a continuous map, 
we look at the discrete map given by f(x)=gT(x). This is called a Poincare map. 



Attractor #3 – Quasiperiodicity 
This is rarely seen in biological systems. It usually occurs in conservative (area preserving systems). A simple 

example is xt+1= xt+π mod 3. Because π/3 is irrational, it will never come back to the same, exact spot  but it will come 
very close. It is commonly found when the system is conservative (no area contraction). Such systems are common in 
physics but the only well-known example in EEB is the simple Lotka-Volterra model with neutral cycles. 

Attractor #4 - Chaos 

Chaos is the most notorious, but it is amazingly difficult to pin down – mathematicians still can't agree on the 
exact definition. One thing we know is that its not a limit point, limit cycle, quasi-periodic, or going to infinity. In 
particular we know it is bounded and a-periodic.(never repeats itself). It turns out the last key condition is sensitivity 
to initial conditions. Intuitively this means that two points that start very near to each other end up a long ways away – 
this differentiates chaos from quasi-periodicity (where nearby points stay nearby even though it is bounded and 
aperiodic). To make this rigorous takes some work. The key measure is the Lyapunov number or exponent. 

To understand Lyupanov exponents, we once again need to bring back our friend, the Taylor expansion. 
Assume we have a 1-D discrete map: Nt+1=f(Nt). Then lets take two points N and N+h which are separated by a distance 
h. How far will the next points be: |f(N+h)-f(N)|=|f(N)+f'(N)h+ 1/2 f''(N)h2+o(h)-f(N)|≈|f'(N)h|. Thus an initial distance 
of h has been magnified by a factor of f'(N). If |f'(N)|<1 then the next pair of points are closer, and further if |f'(N)|>1. 
Thus lets imagine we have a long series of points {Nt} that represents a trajectory of the map f. Now at some points we 
might be moving further apart and at some points we might be moving closer together, but the overall magnification 
would be: |f'(N1)f'(N2) … f'(Nt)| and the average magnification with each step would be: |f'(N1)f'(N2) … f'(Nt)| 1/t (i.e. the 
geometric mean separation factor). This is the Lyapunov number and there is an overall spreading of nearby points 
(sensitivity to initial conditions) when it is greater than 1.  As a calculational convenience we sometimes look athe log 
of the Lyupanov number, ln : |f'(N1)f'(N2) … f'(Nt)| 1/t  = 1/t Σ ln f'(ni).and this is called the Lyapunov number. 
Spreading occurs when the Lyapunov number is >0. In practice to calculate a Lyapunov number we start at any point 
and proceed to calculate a very long series of points (take t ∞) and assume this gets us close to the Lyapunov 
number since it is hard to determine all the points in the orbit. Note that at a limit point, the Lyapunov number is just a 
test for stability. To generalize Lyapunov numbers to an n-D discrete map, we simply keep the geometric mean of all 
the 1st eigenvalues, 2nd eigenvalues, etc. of the Jacobians and end up with n separate Lyapunov numbers. chaos occurs 
when none of the Lyapunov numbers are =1, and one of them is >1. 

This sensitivity to initial conditions has great implications1 on the use of deterministic models for 
prediction. 

A key factor that seems to make chaos is a stretch and fold dynamic, similar to that by which salt-water taffy 
is pulled. If you look at the logistic map, it is first stretched since the region [0, ½] and the region [ ½ ,1] are both 
mapped to [0,1]. This is then folded since the region [0,1] is then mapped back to two effectively independent regions 
[0, ½ ] and [ ½ ,1]. 
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An alternative to the sensitivity to initial conditions criteria  is that the dimension of the attractor be fractal 
(non-integer). Thus an attractor that is bounded, aperiodic and fractal is called a strange attractor. While there are 
chaotic attractors that aren't strange and vice a versa, this set is largely overlapping. 

Sensitivity to initial conditions – multiple attractors 
All of the above analysis assumes that there is only one attracting point. In reality, many non-linear systems 

have multiple attractors and repellors. Thus there is not one asymptotic (t ∞) behavior but many (one for each 
attractor). The long term behavior depends on the initial condition (starting point). 

This situation is analyzed by looking at basins of attraction. The set of all points that go to a given attractor is 
called its basin of attraction. Often times the basins of attraction are neatly divided by a line or curve. Sometimes 
however, the basins of attraction are divided by extremely complicated shapes with a fractal dimension >1. These are 
called "fractal" basins of attraction. The most famous of these is the "Mandelbrot set", although this takes place in the 
complex plane and has little relevance to biology. Fractal basins of attraction are sometimes found in biology too. 

As an example consider the following increment map: 

 
There are two stable points shown in gray and black and two unstable points shown in empty circles. The basins of 
attraction are shown by lines that match the color of the stable point. 

sensitivity to parameter values 
One big assumption of asymptotic analysis is that all initial conditions go the same place. We addressed this 

above. The other big assumption is that the asymptotic behavior is the same regardless of parameter values. Often this is 
true – at least qualitatively. In the logistic model dN/dt=rN(1-N/K). The system has the same asymptotic behavior 
regardless of the value of r. If we change K, the exact location of the equilibrium point changes, but qualitatively the 
behavior is unchanged. 

However, many times this is not true — as we change a parameter the asymptotic dynamics of a system 
change drastically with equilibrium points appearing and disappearing. As an example – lets look at the famous sheep 
grazing example. The grass grows logistically, and the sheep graze with a type I functional response: 

Along the Y-axis is dG/dt (growth rate of the grass) and along the X is the amount of grass. The increment map 
function g, is given by subtracting the logistic growth (dark line) from the appropriate saturation consumption line. We 
will look at the behavior of the system as we increase the number of sheep (leading to higher saturation levels of 
consumption). The return maps go as follows: 



 
we can see that as we vary the parameter S, the number of sheep, we go from 1 equilibrium point to 2 to 1. This 
information, might usefully be contained in what is called a bifurcation diagram where we plot the equilibrium 
value(s) vs. the parameter value: 

The above bifurcation diagrams shows two bifurcations (changes in attractor structure). In each case, this occurred 
because a hump of the increment crossed the magical y=0 line – causing us to go from no equilibrium points associated 
with the hump to two (one stable, one unstable). Similarly in discrete systems, bifurcations happen when the hump goes 
over the magical y=x line ( f' leaves the region –1 to 1). Thus if we want to come up with a classification of possible 
bifurcations we just need to find a complete list of the ways we can cross the dividing line between stability and 
instability: 
Type Discrete event Continuous event Return map just after Bifurcation map 
Saddle-node f'>1 g>0 

  
Period doubling f'<-1 #N/A – discrete 

only 

 
 

Hopf 
Neiman-Sach in 
discrete 
2+ Dimensions 
only 

conjugate pair 
a±bi go out unit 
circle 

conjugate pair 
cross y-axis (a>0) 

2+D – draw phase map  

Transcritical 
(non-generic, but  
very common in 
biological systems) 

f>1, but one 
side of hump 
anchored were 
crosses critical 
line 

g>0 as in discrete 

  
 

These bifurcations can also occur in reverse direction – called a subcritical bifurcation. These same maps occur in 
continuous time (except we lose the period doubling). When we go to two dimensions, we also pick up Hopf 
bifurcations (creation of a stable limit cycle from a stable limit point). We also pick up the 1-D bifurcations of limit 

1 sheep few sheep many sheep 

dG/dt 

G* 

S



cycles. Thus a limit cycle can undergo a saddle node bifurcation or a period doubling bifurcation. We use Poincare 
maps/sections to study these. There are several bifurcation routes to chaos. One is called the period doubling cascade, 
where we see 1,2,4,8,16, …, 3 cycles then chaos. Another is through quasiperiodicity (this is usually seen in 

conservative=area-preserving maps which are not that common in biology). 
Here we see the bifurcation map for the simplified logistic function (rx(1-x) ) where r is the bifurcation 

parameter. This is a numerically calculated bifurcation diagram. We do this by taking a random starting point (here 0.1) 
and running it for parameter values r=0, 0.01, 0.02 … For each a parameter value we run the logistic for 200 steps. We 
take the last 100 steps and plot it. Here we can see several bifurcations: 
�  At 1.0 we see a transcritical bifurcation where the point x=0 transfers its stability to the other equilibrium point. 
� At 3.0 we see a period double bifurcation 
� At ~3.445 we see another period doubling (giving us a period of 4) 
� The period doublings continues 
� After ~3.570 we see chaotic behavior with occasional brief returns to periodic behavior. 

You may have noticed that in all these bifurcations there seemed to be a preservation of some number of 
equilibrium points. In fact there is. If you count an index for the phase space where: 

stable points are +1 
unstable points (& saddles) are –1 
cycles (2-cycles or limit cycles) are +2 

Then the sum of the indices gives an index which remains constant as you vary any parameter. Thus a Hopf bifurcation 
takes a stable point (+1) and turns it into a stable cycle and an unstable point (+2 and –1 = +1) and the index remains 
constant. 

What can we study if its chaotic – ergodic properties 
Although the fact that chaos has sensitivity to initial conditions might seem to doom us to being unable to 

make predictions in chaotic systems, there is some hope. This is due to a field that treats deterministic systems as 
random systems. And the prediction we can make is the probability distribution of where we will find the point at any 
given time. 

A system is ergodic if when you start at any point x, you will eventually reach the point y for any points x 
and y. Technically this statement needs the qualifier "almost any" x and "almost any" y. Another way to look at it is 
small intervals (ε-balls to a mathematician) – any ε-ball carried forward will intersect any other ε-ball if you wait long 
enough, no matter how small the ε-balls. Another definition is that any invariant set is has measure 0 or 1. Notice that 
ergodicity is relative to the set you're using. A system that is ergodic over its attractor is not ergodic if you include a 
transient trajectory leading into the attractor. A system that is ergodic has two key properties: 
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• measure preserving - there is a measure (probability distribution) that is untouched by the transformation (all 
ergodic systems are measure preserving but not vice a versa) 

• a time average=ensemble average –this result means that if you take one starting point and carry it forward 
over time, waiting long enough for the transients to disappear, then follow the behavior of one trajectory over 
time it will match the natural measure (that is preserved) and it will be independent of initial conditions 
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In other words, if a system is ergodic, there is some probability distribution that describes the time average of the 
system. The time average is necessary because a cycle is ergodic and a bolus of initial conditions can all be moving 
through the cyle together, leaving all probability concentrated at a single point in the cycle at any one point in time. 

 
The above diagram shows the natural measure for the discrete logistic map over 100, 1,000 and 10,000 iterations. 

An even stronger condition than ergodic is mixing. A mixing system prevents a bolus from moving through as 
a group. It sprays any interval out. It can be thought of as “ergodic without cycles”. This has the stronger consequence 
that at any point in time far in the future, the behavior of a single initial condition will look like the ensemble average 
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In other words, if a system is mixing, there is some probability distribution that describes the behavior of an 
ensemble at a single point in time (far into the future). 

Notice that in this equation and the related one for the ergodic system, not just does the time average of x equal 
the ensemble average of x, but the time average of any function, f(x) = the ensemble average. Hence for example the 
variances and higher moments will also be equal. 

The strongest condition is called exact and it is very similar to mixing, but subtler stronger – it assumes you 
also have a dense number of periodic points. This gives rise to the stretching and folding of chaos, and in fact exactness 
implies chaos (sensitivity to initial conditions occurs. 

The famous Perron-Froebenius theorem is really just a special case of this. The Perron-Froebenius theorem 
addresses the eigenvalues of positive matrices and is applied to linear systems: xt+1=Axt. Two results tell us that the 
dominant eigenvalue (one with largest magnitude) is bounded by the lowest and highest row sums (or column sums) 
and that there is a real (non-complex) eigenvalue with this magnitude. We can add to this that if the matrix is ergodic 
(irreducible in matrix terms), then the system is independent of initial conditions and all starting points will converge s 
probability distribution given by the dominant eigenvector – there may be cycling within this state (and hence more 
than one eigenvalue with this magnitude). If the system is mixing (primitive in matrix terms), then there is no cycle and 
we converge to a single probability distribution found in the dominant eigenvector, which has a single dominant 
eigenvalue. 

diffusion equations 
So far we have only looked at ordinary differential equations (ODE’s). Now we will look at partial differential 

equations (PDE’s). These are differential equations that use partial derivatives. They are much harder to solve than 
ODE’s. There are three general classes of ODE’s, but it turns out that in EEB, really only one type is useful. This type 
is called the reaction/advection/diffusion equation. It is primarily useful for describing patterns in space. It takes the 
form: 
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Here, n(x,t) is the state equation. It tells us how much of something (individuals, genes, etc) there is at the point x 
(along the real line) at any time t.  It has straight-forward generalizations if x is a vector (2-D plane, 3-D space). 

• Reaction (r ) – describes creation and destruction of the objects being counted (e.g. birth, death) and 
depends only on the count at the given location (no neighborhood effects) 

• Advection (a) – describes directed movement of individuals and gives the average distance moved by 
an individual 

• Diffusion (d) – describes random, aimless, random-walk-like movement and describes the variance in 
the distance moved. 

To build some intuition about this, let us first start by looking at a single interval and the current or flow, denoted by J, 
into or out of this interval: 

Then n(x,t)∆x is the number of individuals found in the interval 

The change of number of individuals is ( ) )],(),([),),,((),( txJtxxJtxtxnrxtxn
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If we divide both sides by ∆x and take the limit as ∆x 0, we get: ),(),),,((),( txJ
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Now, lets take a closer look at J(x,t), the current past the point x assuming the particles behave as if in a random walk: 

Take ∆x= mean distance traveled in ∆t time and let p, q be odds of a step right or left respectively. Then (p-q)∆x/∆t = 
velocity to the right.  If we look at variance for a binomial system, we can see that the variance of the distance covered 
in unit time is: (p ∆x)(q ∆x)/∆t. 
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The above assumed constant velocity and diffusion, moregenerally, we can write: 

),(),),,((),(),),,((),( txntxtxnd
x

txntxtxnatxJ
∂
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−=  Which completes the equation. Note that flow being 

negatively proportionate to change in concentration makes sense. Very often, we will see scenarios where 
a(n(x,t),x,t)=0 and d(n(x,t),x,t)=D, a constant. 

The simplest case is where r=0 also. Let us assume we start with all individuals concentrated at the point x=0. 
In this case the solution can be quickly checked to be a gaussian distribution whose mean remains 0, and whose 
standard deviation, σ, grows as √t. If we instead put boundaries (say at plus  and minus C), then the system spreads 
out until it is uniformly distributed. If we instead put a different kind of boundary where items that hit the boundary 

∆x 

J(x) J(x+∆x)

∆x 

J(x) 

∆x 

J(x+∆x)J(x-∆x) 



disappear (r(-C,t)=0, r(+C,t)=0) then the population eventually disappears to zero. These two types of boundaries are 
called reflecting and absorbing respectively. 

If we add in a reaction term we can represent population growth as well. If we let population growth vary as a 
function of x – and say there is a central patch where it grows at a rate>1 and the two edges it grows at a rate <1, then 
we have modeled a source sink population. We find that depending on the size of the patch and the proportion of the 
two growth rates relative to 1, we may either get a self-sustaining population or a population that goes extinct. 

It is also possible to get more complicated situations. If we model growth with a carrying capacity with the 
population starting all at x=0, we get a standing wave whose front moves at a constant spead. Under other scenarios 
(e.g. predator prey) we can get an oscillating wave, where at one point over time or at one point in time over space, we 
see oscillations. 

Numerical simulation 
Very often since differential equations are so hard to solve, we end up calculating numerical solutions. 

Although this in the end is just a form of simulation it is fairly powerful for several reasons. One is that we may be able 
to get analytical results in certain, degenerate cases that allow us to test our simulations. Another is that we inherit a rich 
set of machinery (computer code) written by others to simulate differential equations. Finally, it gives us a very concise 
notation to describe our model for others even if the solution is messy. 

If time is discrete – all is well, we can simulate each time step forward and we will be accurate to within the 
rounding limits of the computer. 

If time is continuous it is more problematic. Continuous time does not exist in the computer. Some sort of 
discretization of time is needed. The simplest and most intuitive approach is called Euler’s method. 

Say we have a 1-D continuous differential equation: dx/dt=f(x). Then we pick a very small time interval, ∆t 
(maybe =0.001). We then approximate by xt+∆t=xt+f(x) ∆t. We repeat this over and over and we get a reasonable 
approximation to the solution. However, now in addition to the rounding error in x, we have discretized time which 
introduces error as well. More sophisticated methods (such as Runge-Kutta exist). In practice, Euler’s method should 
only be used as a pedagogical device and more sophisticated methods should always be used. 

We can also numerically solve partial differential equations (PDE’s). Again the simplest approach is a simple 
discretization of space and time. For the diffusion equation we take small intervals ∆x in space ∆t in time. The simplest 
discretization of the reaction-diffusion equation is: 

Nx,t+∆t=r(x,t)+D[(n(x+∆x,t)-n(x,t))-(n(x,t)-n(x-∆x,t))] 
If we have initial conditions for all points x for t=0, then we can just roll this equation forward, solving for all points x 
for t=t+∆t and then so on. Again this naïve method has problems and more sophisticated methods should be used. 



Homework #2 

1) Find the dominant eigenvector and eigenvalue of the matrix 








43
21

. Use repeated iteration (take any 
random initial vector x0 and calculate xt=Atx0=A(A(Ax))). Repeat until it converges. 

 
 
2)Analyze the simplified discrete logistic xt+1=µxt(1-xt) by numerical methods. 
2a) analyze sensitivity to initial conditions for µ=2. Start at x0= each of -0.1, 0, 0.1, 0.5, 1, 2, 5. Iterate the 

system forward and see what attractor you end up at. Use this information to guess at basins of attraction. 
2b) analyze sensitivity to the parameter, µ. Starting always at x0=0.1, iterate the system forward for µ=each of 

0.5, 1, 2, 3, 3.3, 3.5, 3.9. See what happens in each of these cases. Use this to draw a crude bifurcation 
diagram. 

2c) analyze the ergodic properties in the chaotic regime (µ=3.9) again starting at x=0.1, iterate forward 1000 
steps, throw away the 1st 100, and then plot a histogram. 

Hint: in Matlab, the following piece of code will perform a simple iteration and save all steps in a vector 
variable (x):  x=0.1; for i=1:100, x=[x 4*x(end)*(1-x(end))];end 

 
 
3) What kind of bifurcation occurred in the below diagram showing the Rosenzweig-MacArthur predator prey 

equations as we vary the prey carrying capacity, K? 

 
4) Below are two diagrams showing phase plane analysis for the classic Lotka-Volterra competition equations. 

As we vary the parameter K1 we move from the diagram on the left to the right. What kind of bifurcation 
occurred? This is tricky! Hint – is the equilibrium conservation rule followed? What happened? Just 
because biologists are only interested in the positive quadrant doesn't mean no math goes on elsewhere. 
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Top 10 (okay, 14) things you need to know about probability 

Simple probability 
Let � be a set of possible outcomes. Let A,B ⊂ � be subsets of possible outcomes. Then: 

1) Law of simultaneous events: 
P(both A and B occur)=P(A∪B)= P(A)+P(B)–P(A∩B)  
1a) Law of addition 
a special case of above: if A∩B=∅ ⇒ P(A∪B)= P(A)+P(B) 
2) Conditional probability 
P(A|B)=P(A∩B)/P(B) 
3) Independence 
If P(A|B)=P(A) then A & B are independent  
23a) Law of multiplication 
combining 2 & 3, if A & B are independent then P(A ∩ B)=P(A)P(B) 
4) Law of total probability 
Let Ai be a disjoint set that spans �  (i.e. Ai ∩ Aj = ∅  and ∪i Ai = �). Then for any B, P(B)=ΣP(B∩Ai)=ΣP(B|Ai)P(Ai) 
 
Example: roll a single, six-sided die. Let A={1,2,3} and B={2 ,4, 6} then: 
P(A ∪ B)=P{1,2,3,4,6}=P(A)+P(B)-P(A ∩ B)=3/6+3/6-1/6=5/6 
P(A|B)=P{1,2,3|2,4,6}=P(A ∩ B)/P(B) = 1/6/1/2=2/6=1/3 
A and B are not independent 

Probability distributions 
5) Definition of a random variable 
A random variable is a variable that takes on values by chance according to a distribution function, F(x)=P(X ≤ x). 

Random variables are usually denoted by a capital letter. Note F(-∞)=0 and F(∞)=1 and F is monotonically 
increasing. This is sometimes called the cumulative distribution function or CDF. 

6) Probability functions 
For any random variable and distribution function, there is a more obvious function. For a discrete distribution (X takes 

on only discrete values), it is called the probability mass function p(xi)=P(X=xi) and F(x)= ∑
i ∋ xi≤x

p(xi). For 

continuous distributions, it is called the probability density function (PDF) and is the derivative of the CDF 

(and hence the CDF is the integral of the PDF: F(x)=⌡⌠
-∞

x
p(x)dx . In either case the probability function can be 

though of as describing how a probability mass of 1 (think of sand weight 1 gram) is spread out over the 
probability space. 

7) Expectation of a random variable 



Expectation is a fancy word for weighted average or mean (the weighting is by the probability of a particular value). It is 

often denoted simply by the "E" operator. So if X is a random variable, then E(X)=∑
i

xi p(xi)=⌡⌠
-∞

∞
xf(x)dx.  

8) Expectation of functions of random variables 
If X is a random variable, then it is reasonable to take the expectation of the function of X — i.e. E(f(X)). DO NOT 

EVER ASSUME that E(f(X))=f(E(X))! This is only true in the very special case where f is a linear operator 
(f(ax+b)=af(x)+b). In fact Jensens inequality tells us that if f is convex and not linear, then E(f(X))<f(E(X) 

8) Higher moments 
The most important function of a random variable is the power function. E(Xn) is called the n-th moment. Thus the 1st 

moment is the average, often denoted µ . Often we prefer to look at a central moment: E( (X-E(X))n ) which is 
called the nth central moment. The 2nd central moment is called the variance, often denoted σ2. Note, the 1st 
central moment is always equal to zero. The 2nd central moment has a shorthand calculation formula: E( (X-µ2 ) 
= E( X2-2µE(X)+µ 2 ) = E(X2)-2µE(X)+µ2=E(X2)-E(X)2. 

9) Conditional expectation 
Another useful expectation of a function of a random variable is conditional expectation: E(X|Y) 
10) Sums and convolution 
Suppose we have two independent random variables X, Y and we want to know what the random variable X+Y behaves 

like. This is determined by an operation called convolution: P(X+Y=c)=ΣaP(X=a)P(Y=c-a). 
11) Generating Functions 
Generating functions are a nifty trick used a lot. For any given discrete probability distribution p(x=i) for a random 

variable X, there is one and only one generating function associated with it given by G(s)=E(sX). For example, 
for the Bernoulli variable P(X=0)=p and P(X=1)=1-p, the generating function is 
G(s)=E(sX)=s0P(X=0)+s1P(X=1)=p+(1-p)s. 
Generating functions are your friend because: 
1) They often take infinite series and reduce them to a finite function via the geometric series rule and thus 

can be manipulated. 
2) A specific example of #1 is that they easily perform convolution – i.e. sums of random variables: if X & 

Y are independent random variables, then GX+Y(s)=GX(s)GY(s) – i.e. convolution of infinite series is reduced 
to multiplication 
Example: if X, Y are bernoulli variables, then GX(s)=GY(s)=(p+qs) so GX+Y(s)=(p+qs)2  and more generally 
the sum of n Bernoulli variables has generating function G(s)=(p+qs)n which we can readily look up in a 
table of generating functions to be the Binomial distribution B(n,p). Perhaps even more useful, we can 
quickly see that the sum of two generating functions B(n,p)+B(m,p)=B(n+m,p).  
Even more generally if we take a sum of N random variables S=X1+ … + XN where N is also a random 
variable, the generating function is GN(GX(s)). So compounding of random variables is given by 
compounding of generating functions. 

3) Moments are readily recovered: E(X)=G'(1) and E[X(X-1)…(X-k+1)]=Gk(1) and thus 
var(X)=G''(1)+G'(1)-G'(1)2. For example: E[B(n,p)]=G'(1)=n(p+qs)n-1q |s=1 = nq = n(1-p) 

4) Continuous functions work nearly identically except we use the characteristic function: ϕ(t)=E(eitX) which 
has identical properties except that E(Xk)=ϕk(0)/ik instead of the formula in #3 

13) Law of Large Numbers (sample average  ensemble average) 

Let Xi be a sequence of independent, identically distributed random variables. Then 
1
n, ∑

i=1

n
Xi µ . In other words, the 

average of the Xi approaches the average of the distribution if you take a big enough sample. 
 

14) Central Limit Theorem (sample distribution  normal distribution) 

Let Xi be a sequence of independent, identically distributed random variables. Then ∑
i=1

n
Xi N(nµ,√nσ2) . In other words, 

no matter what distribution, when you sum a bunch together it starts to look normally distributed! 
 
 



Top 13 probability distributions 
Probability distributions play an important role in probability theory and in stochastic processes. It is easiest to 

understand and remember distributions if we group them into key processes that lead to these distributions. 

The counting process distributions 
Imagine a process in which we are waiting over time for an event to occur. When this event occurs we count it 

and start waiting again. This general process occurs in everything from Geiger counters to meteorite strikes on earth to 
roll a natural 7 in the dice game craps. There are three things we could be interested in: 

 
�  the time to the next event 
� the time to the nth event 
� the number of events that happen in a given amount of time 

Another key factor is whether time is discrete or continuous. Do the events happen at any time (continuous) or is there a 
periodic sampling regime in which we check (dice rolls, annual samples). Combining these factors we have six 
distributions: 
 Discrete Time Continuous Time 
 Time=n, rate at single interval=p Time=t, instantaneous rate=λ 
 Distribution E(X) Var(X) Distribution E(X) Var(X) 
time to next event Geometric 1/p (1-p)/p2 Exponential 1/λ 1/λ2  

time to the nth event Negative binomial n/p n(1-p)/p2 Gamma n/λ n/λ2 
expected (mean) # events in 
given time 

Binomial np np(1-p) Poisson λt λt 

 
Notice that the time to the nth event is the same as the sum of n random variables of the time to the next event (hence 
the gamma is the sum of n exponential variables). Not surprisingly, the binomial distribution approaches the 
continuous distribution if you take the limit as n ∞ (smaller time intervals), p 0 such that λ=np is a constant. It is 
also possible to use these distributions to examine what happens as you move across space instead of through time. 
Hence the Poisson is used frequently as a model of random spatial distribution. The exponential distribution has the 
special property of having no memory. If you have waited time T for an event to happen, and it hasn't happened, then 
the odds of it happening are the same as if you hadn't waited time T already. This means it can be shown that all Markov 
processes in continuous time must have exponential distribution between occurrences. The Gamma distribution is a 
highly-plastic function on the interval (0,∞) and hence is used as a generalized probability function to fit errors that 
must be positive. The poisson distribution is sometimes called the discrete normal, because it is so commonly found 
in nature when you look at discrete counts of events. 
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The finite interval distributions 
Most distributions occur over an infinite interval (either –∞ to ∞  or else 0 to ∞). However, sometimes the state 

variable of interest occurs on a finite range, which without loss of generality we can consider to be [0,1]. The simplest 
such distribution is the uniform distribution which assigns equal probability to every point over the range. The uniform 
distribution can be discrete or continuous. 

A generalization of the continuous uniform distribution is the Beta distribution. The Beta distribution on the 
inteval zero one has the form p(x)=Cxp-1(1-x)q-1, where C is a constant that makes the total probability =1. Thus p and q 
determine the shape of the distribution. p describes behavior near zero. If p>1 then it behaves like x2 and increases, if p<1 
then it behaves like p-1 and asymptotes down and if p=1, it behaves like p0=c a line. Similarly q describes the behavior 
near 1 only in reverse (since it is 1-x). Thus we can make basically any shaped function over the interval 0-1. 

 

The normal generalization distributions 
The central limit theorem tells us to expect that many measured distributions should look normal. This is the 

basis of normal distriubtions in statistics (measurement errors should be nearly normal). Thus it is important to know the 
behavior of various combinations of normal variables. Recall that the normal is defined by two parameters, µ, σ and is 
denoted N(µ,σ). N(0,1) is called the standard normal distribution. 

 
Combination Distribution Range 
Sample n normals N(µ,σ) N(µ,σ/√n) (-∞,∞) 
Sum n normals squared: N(0,1) Chi-squared χn [0,∞) 
N(0,1)/√χn (found in sample distribution of variance) t-distribution (-∞,∞) 
χn/χm (found in ANOVA tests) Fisher [0,∞) 
log N(0,1) (found as central limit of product of many variables) Log-normal (0,∞) 

 

The binomial generalization distributions 
The hypergeometric distribution is a non-Markovian generalization of the binomial. The binomial assumes 

that whether success or failure occurs in this interval is independent of how many have already occurred. The 
hypergeoemetric assumes there is a finite number of total successes, N.  

The multinomial distribution allows more than two outcomes (just success and failure). 
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Exponential generalizations 
While the exponential model is a nice model for waiting times since it is Markovian, many waiting times are not 

Markovian (how long you've waited does affect the odds of how long you still have to wait – e.g. a fire occurring is more 
likely the longer you've waited). The Markovian nature of the exponential is quite a strong statement and is often 
referred to by saying that the exponential is memoryless. 

The Weibull distribution is a generalization of the exponential that engineers often use to model waiting times. 
It does allow for memory. The Weibull has two parameters, a shape and a scale parameter. When the shape parameter is 
=1, then the Weibull reduces to exponential. If the shape parameter is less than one, you get a long-tailed distribution 
(likely to happen very quickly but a long wait if it doesn't). If the shape parameter is greater than one, you get a hump 
(likely to happen pretty close to some mean time). 

The Pareto or Power-Law distribution is sometime used for waiting times but more often is used for counts or 
sizes of objects (e.g. the species abundance distribution, the size of asteroids, the distribution of incomes in humans, etc). 
Over finite intervals it behaves much like the pareto with shapes ≤1, but the tail of the Weibull and exponential is longer 
over an infinite range. 

Stochastic processes 

Introduction 
Recall that in deterministic state space systems, we had either: 
Nt+1=f(Nt) or dN/dt=G(N) 

How can we extend this to a random transition rule? The first thing we need to do is to change the state variable form a 
deterministic value to a probability distribution. IE Nt doesn't give the exact value of N at time t, but the probability 
distribution of values at time t. The probability distribution may be continuous or discrete, unlike deterministic 
systems. We typically denote this as πt the probability distribution of the state variable at time t and thus πt(x) gives the 
pdf or pmf that the state variable is equal to x at time t. What about the transition rule? The notation remains the same, 
but it is different – we can't just take a probability distribution and plug it into an equation. Thus we think of probability 
distributions evolving over time. I sometimes find this helpful to think of as an amount of sand weighing 1 gram 
spread over the possible state values, and the sand shifts over time. 

Most of the time we will make the same assumptions that we did for deterministic systems, namely that Nt+1 
depends only on Nt and not on prior values (no lags) — this is called the Markov assumption and also that the transition 
rule (f,G) doesn't change with time — this is called a homogenous system, unlike the deterministic world where this is 
called an autonomous system and homogenous means something different. 

Technically, a stochastic process is a series of random variables indexed by time (Xs, Xt, Xu, Xv, …) with a 
known joint probability distribution (p(Xs=x1, Xt=x2, Xu=x3, Xv=x4, …)=f(x1, x2, x3, x4, …). 
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A full solution to a random (stochastic) process is a formula πt(x)=pt(x|y)π0(y) very similar to a full solution to 
a differential equation. Note that pt(x|y) denotes the probability that you will be at state x given that you were at 
state y an amount time=t ago. The Markov assumption allows us to specify only y, the initial condition, and the 
homogeneity assumption means we only need the ∆t, not the exact times. Just like in deterministic systems, we often 
can't solve for pt(x|y) or it is very difficult to do so. In this case we may do asymptotic analysis and look for a stable 
distribution π*(x) that is approached in the long run. We might also ask other questions such as what is the odds that I 
end up at this attractor instead of that attractor (which makes sense in the deterministic world too) or what is the 
average time until I pass this point (which has no exact analogue in the deterministic world). 

Classification of Stochastic Processes 
Stochastic processes is currently in the "zoo" stage of development — there are lots of individual processes 

described with their solutions, but there is very little in the way of general machinery. 
There are two key types of classification of stochastic processes. 

• Markovian vs non-Markovian: as we shall see shortly, the Markov assumption allows us to prove a number of 
results which we can use simply by knowing the process is Markovian. 

• Mathematical model: there are a number of real-world physical processes that we have in mind. These 
physical processes can be described mathematically as falling in one of three categories: 

o Stationary: This models processes that don't go anywhere – in fact, by definition a stationary process 
is one whose mean and variance don't change over time (E{Xt}=c, E{Xt2}=d where the constants are 
independent of time). Stationary processes typically have two physical models in mind: a sequence of 
independent, identically distributed variables and a Markov process that has achieved a stable 
distribution that doesn't change over time. This may model processes with state variables on �, ∧, ∇. 

o Independent increments:  This models processes where the state value in the next period is equal to 
the current state value plus a random variable. In other words, we study St+1=St+Xt where Xt is a 
random variable with some known distribution, usually taking on integer values and St is the state 
variable whose distribution we study. Typically, we are modeling on ∧ (although Brownian motion is 
on ∇). There are several physical models that fit the general description of independent increments. 

o Chains: These models are on � and model situations where you might  realistically jump from any 
state to almost any other state. 

In general, once we work down to a specific physical process (such as counting/renewal), we find that the canonical 
example that is most thoroughly analyzed is Markovian but there is a more general field that gives general results that 
apply to both Markovian and non-Markovian examples. Thus the organization of the remaining material is as follows: 

1. Briefly examine general truths about Markov models 
2. Examine each mathematical model and general truths about it 
3. Look at a specific physical model nested within the mathematical model 
3a. Look at the Markovian example and its analysis 
3b. Present more general results that can be derived for the physical model. 
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Interestingly, stochastic models can handle a richer set of combinations of types of time and state space: 
 Time Discrete Time Continuous 
State � chain chain 
State ∧ independent increments independent increments 
State ∇ noise noise 

Recall that deterministic systems can only handle the shaded area. 

General terminology and approach 
We will use the following notation: 
p(y,t|x,s; w,r, …) means probability that the system is in state y at time t, given that it was at state x at time s 

(<t), at state w at time r (<t) … 
A stochastic process is Markovian if it depends only on the previous time period (  p(y,t | x,s; w, r; v, q; …) = 

p(y, t | x, s) )  
A stochastic process is time homogenous if the transition probabilities do not change over time ( 

p(y,t+δ|x,s+δ)=p(y,t | x,s) ). 
 
A process that is stochastic and time homogenous thus depends only on the amount of time and the state at that 

the earlier time. Thus we can use a simplified notation: 
 
πt(i) is the probability that the system is found in state i at time t 
pt(i|j) is the probability that the system is at state i when it was at state j an amount t of time ago 
Pt is the matrix of transition probabilities P(t)=[pij(t)] 
 
Solely being a homogeneous Markovian system has several implications: 

Implications of Markov, homogeneous systems 
(1) Markov, homogeneous  
(2) ⇔ Chapman-Kolmogorov:    pt+s(y|x)=∫pt(y|z) ps(z|x) dz = Σz pt(y|z) ps(z|x) 

i.e. can sum over all intermediate points for some intermediate time (have to get there somehow) 
(3) ⇔ πt(y)=∫x pt(y|x) π0(x) dx = Σx pt(y|x) π0(x) 

i.e. can solve for distribution π at any time if know pt(y|x) generally and know initial condition π0 
(4) ⇔ Chapman-Kolmogorov forward differential equation: 

∂
∂tpt(y|x)=∫ W(y|z)pt(z|x)-W(z|y)pt(y|x) dz  - 

∂
∂y[m(y)pt(y|x)] + ½ 

∂2

∂y2[v(y)pt(y|x)]  w/ i.c. pt(y|x)=δ(y-x) 

(5) ⇔ Chapman-Kolmogorov backward differential equation: 
∂
∂tpt(y|x)=∫ W(z|x)[pt(y|x)-pt(y|z)] dz  - m(y)

∂
∂y pt(y|x) - ½ v(y)

∂2

∂y2 pt(y|x)  w/ i.c. pt(y|x)=δ(y-x) 

(2) is just a tool. (3) is useful if we can find p(). Equations (4) & (5) are useful tools for finding p() by giving us a 
differential equation for p in terms of something we can get our arms around: the instantaneous rates W, m, v. 

(6) W(y|x) = lim
∆t  0 

 
p∆t(y|x)

∆t    (for |y-x|≥ e) represents discontinuous jumps from x to y 

(7) m(x)=
1
∆t ⌡⌠

|y-x|<e
(y-x)p∆t(y|x) dy represents small non-random movements (drift) 

(8) v(x)=
1
∆t ⌡⌠

|y-x|<e
(y-x)2p∆t(y|x) dy represents small random movements (diffusion) 

higher moments (where (7) and (8) are the 1st and 2nd moments) are all zero 
thus we have covered all possible movements 



Questions 
What is pt(y|x) for all time t (the full solution analogous to solving a differential equation) 
Does π*(x)=π∞(x) exist, if so what is it?  (analogous to asymptotic analysis of differential equations) 



 
 

Chains 

Definition and example 
A chain is a markov model with the state space being �, an unordered (usually) set of discrete states. 
One classic example is behavior, say the behavior of a pollinator where the states are: 
1. examine flower 
2. eat at flower 
3. move to next flower on same plant 
4. move to new plant 

We will start with a discrete time chain. In this case, the system is quite easy to deal with. If we can specify the one-step 
transition probabilities the rest can easily be solved. For example: 



















02.01.
2.3.4.3.
003.5.
8.5.01.

 

Thus for example, if we have just moved to the next flower on the same plant, there is a 50% probability we will next 
examine the flower, no chance that we will immediately eat at the flower, and a 30% and 20% chance that we move on 
to another flower, plant respectively. 

Full solution 
The Chapman-Kolmogorov equation tells us that if the one-step transition matrix is P, then the n-step transition 

matrix Pn is simply the n-th power of P=Pn. Moreover, if we know the initial condition π0, then πt=Ptπ0. This should look 
similar to the deterministic systems of linear difference equations we have already seen. Thus we have an exact solution. 
We can also solve for the equilibrium or steady state distribution, if it exists. We can do this in two ways: 

π*=P∞π0  which in turn is solved by finding the dominant eigenvalue of A and π* is the corresponding 
dominant eigenvector 

π*=P π* 
Following in analogy with the deterministic system, lets think about this from an asymptotic point of view. What type of 
end scenarios can we end up with? 

Example: 
Take a simple two state chain. For example, Schaffer's good year/bad year model of stochastic environmental 

variation. — let the first state represent a good year and the second state represent a bad year. 

P= 







−

−
βα

βα
1

1
,  say α=0.2 and β=0.3 so P= 








7.02.0
3.08.0

 So there is a 80% chance a good year is 

followed by a good year. 
Say the year 2000 is a good year. What is the probability distribution of good vs bad years in 2001? 









=

0
1

2000π   so π2001=P π2000 = 







=
















2.0
8.0

0
1

7.02.0
3.08.0

 

More challenging: what is the distribution of good vs bad years in 2003? 

π2003=P3 π2000 = 







=
















=
















35.0
65.0

0
1

475.35.
525.65.

0
1

7.02.0
3.08.0 3

 

Note that if 2000 had been a bad year, we would have a different distribution [.525 .475]. 
Is there a stable distribution? 



solve π*=Pπ* ⇒ π*=[3/5 2/5] 
 

alternatively, look at P∞. Well, numerically P7= 







4.04.0
6.06.0

No matter, what π2000 is, π2007 is going to 

be [3/5 2/5] as are all ensuing years. Alternatively, analytically, the dominant eigenvector of P (of course associated with 
an eigenvalue of 1) is [.6 .4]. This is a general rule you may recall from the linear algebra section, if we take a matrix to 
higher and higher powers, it eventually converges to have columns of the dominant eigenvalue. 

Asymptotic analysis 
There is a theorem that says that the set of states in a chain can always be broken up as follows: 
S=T ∪ E1 ∪ E2 ∪ …  

T represents the transient set (the system eventually leaves T and goes to one of the Ei, never to return). States in T 
communicate with each other and with states in the Ei's 

Ei represents a set with two characteristics: 
you can eventually get from any state in Ei  to any other state in Ei (i.e. irreducible) 
once in Ei you can't leave Ei (i.e. closed or absorbing) 

within Ei one of two things can happen: 
� the system can either spread out to a steady state π* within Ei (mixing case) 
� the system can move periodically around all states within Ei (periodic case) 

Thus we have asymptotic analysis similar to the deterministic case. There are attractors (closed irreducible sets) and 
points that are not attractors (transient). The attractors can be a single point, a cyclic set, or a mixing set (chaos). 
Look at the following transition matrix to make this clear: 

































3.04.0000000
4.03.0000000
3.00100000

0008.07.0000
02.002.03.0000
00000001
00000100
01.0000010

 

 
This might seem like a lot to parse, but look at it now: 

































3.04.0000000
4.03.0000000
3.00100000

0008.07.0000
02.002.03.0000
00000001
00000100
01.0000010

 

We have three closed, irreducible sets (the Ei's) found in the solid boxes. One is periodic with a  3-cycle. One is mixing 
with two elements, and one has a single element. There are also two transient states (in the dotted box). These transient 
states communicate with each other, and with the closed, ergodic sets. We can tell that we eventually end up in one of 
the closed, ergodic sets, and that the behavior is easy to determine with each of them. The only place where the behavior 



might be unclear is in the 2nd ergodic set. We just need to solve the equation: 












=








⇒
















=









9
7

9
2

8.7.
2.3.

2

1

2

1

2

1

π
π

π
π

π
π

 

and we see that in the long run, if we hit the 2nd ergodic state, we will spend 2/9 of our time in state 4, and 7/9 of our time 
in state 5. 

Thus we can do a kind of decomposition: determine what our attracting sets are, and then independently analyze 
the behavior of each attracting (aborbing) set. 

Just as in the deterministic world we can make some general statements about behavior within a closed, 
irreducible set: 

since it is closed and irreducible, it is ergodic (time average = π* = ensemble average) 
if it is mixing (aperiodic or primitive) then lim as t ∞ πt=π*= ensemble average at a single point in time 
also recall that in a finite chain, at least one closed, irreducible set exists 

First step analysis 
How do we tell which ergodic set we will end up in and how long it takes to get there? We do this using one-

step analysis. For example what is the probability that we will end up in the periodic ergodic set (states 1-3). Define: 
ui = P{end up in cyclic set | start at state i} 

Clearly: 
u1, u2, u3 = 1 
u4 – u6 = 0 

The tricky part is figuring out u7 and u8. Here we need one step analysis: 
u7=0.1 u1 + 0.3 u7 + 0.4 u8   
u8=0.4 u7 +0.3 u8 
Because if we're at 7, there is a .1  chance we goto the set, a 0.3 chance of 7 and a 0.4 chance of 8. Then our probabilities 
start over again. 
Recalling u1=1 and solving using simple algebra gives: u7=0.2121 and u8=0.1212 
Similar analysis can give the odds of ending up in the other two ergodic states. We can use a similar technique to 
calculate time to leave the transient set T={7,8}.  
Define vi=time first leave T, given start at i. Then 
v7=1+0.3 v7+0.4 v8 
v8=1+0.4 v7+0.3 v8 
giving v7=v8=3.333 time steps 
 
We can generalize the 1st step analysis for any chain, A as follows. 

Rearrange P to P= 







I
RQ

0
 by replacing ergodic sets with a single absorbing state, and reordering. Thus Q gives a 

matrix mapping transients to transients and R gives a matrix mapping transients to ergodic sets. Then 








 +++
=

−

I
RQQIQ

P
nn

n

0
)...( 1

and 







=

∞
∞

I
WRQ

P
0

 where W=(I+Q+Q2+ …)=(I-Q)-1 

Then WR is a matrix that gives the odds of transition to any absorbing set (rows) from any transient state (cols). 
Similarly, W 1 gives the mean time to absorption given starting from transient state (row). 

Continuous time 
Note that a continuous time chain can easily be decomposed into two separate random processes: 
� A discrete time chain conditioned on the fact that a change has occurred 
� A continuous time process giving the time between changes 

Lets briefly examine the second process. In order to be Markov, the odds of jumping after to be the same at time t or t+τ. 
This is called memoryless. We will show that the exponential distribution is Markov in this sense (it can be shown that 
the exponential is the only memoryless distribution). 

Let T=time of jump. Then, we need P{T>t+τ|T>t}=P{T>τ}, but P{T>t+τ|T>t}=P{T>t+τ and 
T>t}/P{T>t}=P{T>t+τ}/P{T>t} since τ>0 = exp(-λ(t+τ))/exp(-λt)=exp(-λτ) QED. 

Thus in any continuous Markov chain, the time between jumps must be exponential! 



 
It is fairly easy to figure out how to specify transition probabilities for a discrete time chain – just use the one 

step transition probabilities. This then easily generalizes to Pn=Pn.  
It is not nearly so obvious what the appropriate transition matrix for continuous time should be. But think about 

the deterministic case – difference equations are replaced by differential equations with infinitesimal time steps. This is 
what we need to do for a chain as well. 

Let Pt be the transition matrix for time t. Note that as t 0, Pt I which is not very useful. Lets instead use: 

t
IPG t

t

−
=

→
lim

0
 which conveniently gives us: P=I+Gt+o(t) 

G is a matrix whose every row sums to zero. The diagonal element gives the rate at which a state is entered (non-
diagonal) or left (negative of diagonal). In particular, these rates are the rate parameter (λ) in an exponential distribution. 
The negative diagonal gives the rate parameter for an exponential distribution giving the time to jump out of a state.  The 
ratio of a non-diagonal to the negative diagonal gives the probability that if a jump occurs, it will be to that state. 

Given the generating matrix, G, we can quickly deduce several equations: 
P't=GPt  (since P't=(Ph+t – Pt +o(h))/h=GPt)  This is called the Forward Chapman-Kolmogorov equation 
Pt=etG (solution to above) 
π=Pπ  ⇔ Gπ=0 
 
Example: 
Consider the discrete two-state Markov chain given by: 

P= 







−

−
βα

βα
1

1
 

I.E. it leaves state 1 with probability α and leaves state 2 with probability β. Recall that the stable 
distribution is given by: π=P π  or π=[α/(α+β)  β/(α+β)] 

The continuous time equivalent would be: 

G= 







−

−
βα

βα
 

Note that columns sum up to zero instead of one. 
So the general solution is Pt=etG and the stable distriubtion is given by π=Gπ. 

To solve for Pt we need to diagonalize G. Let B= 






 +−
=Λ







−
00
0)(

1
1 βα

α
β

 and G=BΛB-1 

so Pt=etG=B et Λ B-1  = B 






 +−

0

)(

0
0
e

e tβα

B-1 = 







+−

−+
+ )())(1(

))(1()(1
thth
thth

βαα
ββα

βα
where h(t)=exp(-(t(α+β)) 

note that as t ranges from 0 to ∞ , h(t) varies from 1 to 0. So at t 0, Pt I, and as t ∞, Pt 







+ αα

ββ
βα

1
, the 

stable distribution which turns out to be the same as the discrete case. However the time to a jump from state 1 is given 
by an exponential distribution with parameter λ=α instead of a geometric distribution with parameter p=1-α. 

Independent Increments (Add/Remove) 
When we study chains we study a finite state space where we can conceivably jump from any state to any other 

state. 
Another very useful type of probabilistic model is what I call add/remove models. It is intended to represent the 

count of a number of objects. Thus the state space is infinite and goes from 0,1,2, … ∞. Moreover, each stochastic event 
represents at most one object being added or removed. Thus we only ever jump to neighboring states. 

We will give some more concrete examples in a minute, but first we will present two general results 



General results for add/remove models 

Setup 
let λi represent the probability (or rate in a continuous model) of increasing – i.e. the birth rate. Let µi represent 

the probability of decreasing – i.e. the death rate. Note that the birth and death rates are functions of i  — i.e. the birth 
and death rates can be different if the state is 1 vs if the state is 100. 

Thus: 























+−
+−

−
−

=

...
)(00

...)(0
0)(
00

333

2222

1111

00

µλµ
µµλµ

λµλµ
λλ

G  where G is an infinite matrix 

Stable distribution 
A stable distribution, π* is given by 0=π* G. This gives us an infinite set of equations: 
−λ0π0 + µ1 π1 = 0   i.e. net of flows out of 0 and into 0 =0 
λn-1πn-1 –(λn+µn)πn + µn+1πn+1 =0   i.e. net of flows out of n and into n =0 
 
solving we get: 
π1=λ0/µ1 π0 

and more generally: 1
21

110
−

−= n
n

n
n π

µµµ
λλλ

π
K

K
    let θn=

n

n

µµµ
λλλ

K

K

21

110 −    (θ0=1) 

Now, since Σπi=1, then π0=1/Σθi.  Note that if Σθi=∞, then π0=0 and πi=0 — i.e. there is no stable distribution. 

First step analyses 
A first step analysis and solution of recursive equations gives us ui=P{hit 0 | start at i} 

define ρi ≡ 
n

n

µµµ
λλλ

K

K

21

21  (ρ0=1) 

Then um=

∑

∑
∞

=

∞

=

0i
i

mi
i

ρ

ρ
  Note that if m is finite and ∑

∞

=0i
iρ = ∞, then the top term is also ∞ and um=1 

Define T0|m=E(T where first hit 0 | start at m) 

Then T0|m= ∑∑
−

=

∞

=

+
1

11

1 m

k
k

i ii

ρ
ρλ  

Existence of a stable distribution 
Recall that in the finite case, we could divide up the state space as: 
S=T ∪ EC1 ∪ EC2 ∪ …∪ EP1 ∪ EP2 ∪…  

where the Ei's are each closed and irreducible (and the EC's are mixing and the EP's are periodic, and the T is transient. 
In the finite case, at least one E (either EC or EP) must exist. 
In the infinite case we get several complications: 
• EP's go away 



• some E does not have to exist (can have S=T) 
• The EC's split into two: E* and E0  
 
 
So we have: 
S=T [∪ E*1 ∪ E*2 ∪ … ∪ E0

1 ∪ E0
2 ∪ …] 

 
E*'s have a stable distribution and may be finite or infinite 
E0 are always infinite and are called null recurrent – the stable distribution is π*i=0 for all i 
All states could be transient with no E's 
 

Count/Renewal 

Poisson 
The simplest example of an add/remove model is the Poisson process. The Poisson process counts occurences 

of rare random events (clicks of a geiger counter, speciations, long distance dispersals, fires, etc). 
We can imagine three variables of interest: 
N(t) = # of events occurred in amount of time t 
M=W(1) = amount of time between events 
W(N) = amount of time for N events to occur (note that this is a sum of N independent N random variables) 
Each of these is a random variable. 
 
The distribution functions for these are well known: 
N(t) is distributed as the Poisson with rate λ  
M is distributed as the Exponential with rate λ  
W(N) is distributed as the Gamma with rate λ and shape N 
 
Let's look briefly at how this fits into our add/remove model 
λi=λ for all i  (i.e is constant) 
µi=0 for all i 
 

So 























−
−

−
−

=

...
000

...00
00
00

3

22

11

00

λ
λλ

λλ
λλ

G  

giving 
p'0(t)=−λp0(t) 
p'n(t)=λpn-1(t)-λpn(t) 
 
so 
p0(t)=e-λt 
and substituting into the 2nd equation gives 
p'1(t)=λe-λt –λp1(t)  gives p1(t)=λt e-λt assuming p1 (0)=0  (check that it satisifies the dif eq) 
and generally pn(t)=(λt)n/n!e-λt 

which is the Poisson distribution! 
 
We can substitute into the general equation for π* and we see θn=λn/0=∞ so clearly Σθi=∞ and there is no stable 

distribution. Hence all states are transient  (which makes sense as the processes is ever increasing to infinity) 



Non-Markovian=Renewal 
The non-Markovian generalization i 

Queue 

M/M/1 

Non-markovian 

Birth/Death 

Random Walk 

Bounded 

Infinite 

Continuous time 

Martingale 

Stationary 

IID 
derivative of RW 

Stationary 

Stochastic Differential Equations 
 
 
 

SDE’s as approximations to deterministic 
dX=f(X(t),t)dt + g(X(t),t)dB(t)         (dB(t)=W(t) ) 



Technical condition to meet Practical requirements 
Additive noise •  substitution of a parameter with a parameter plus noise should lead back to 

an additive model 
•  absorbing states should be absent (or one should have assurance that 

absorbing states are unimportant for the system - e.g. population sizes are 
large) 

•  log transforms or other transforms may make the noise additive 
White noise •  system under study should be memoryless (deterministic recovery times 

should be fast relative to the frequency and magnitude of the noise) 
•  alternatively, the noise should be white 

Continuity of noise •  deterministic recovery times should be fast relative to the frequency and 
magnitude of the jumps if any 

Multiple attractors •  apply deterministic systems to systems with one global attractor  
•  alternatively, ensure that the basins of attraction are large relative to the 

disturbances 
Chaos •  if the deterministic system is chaotic, do not use the model to do anything 

more than make one step predictions (i.e. one most have an actual noise 
realization that can be combined with the deterministic system) 

•  more work needs to be done on exploring this mathematically 
Mean path questions only •  although not discussed above, it is obvious that deterministic systems are 

only good at predicting average behavior. If one wants to look at variation, 
stochastic systems are needed. 



Movement Jump       Continuous 
Time Discrete   Continuous    Continuous 

State space {} ∧ ∧ multiplicative {}, ∧ ∧  ∧ mult ∇ ∇ 
Examples Markov chain Counting 

Random walk 
Branching process Markov jump 

chain 
Rand walk 
Poisson 

Birth-Death Logistic w/ 
catastrophe 

Brownian motion 
SDE 

atom P P or (λ, µ) pk=P{# offspring=k}           G   ??? m(x), v(x) 
differn* eq 

for P 
Pn=Pn  G(s)=Σpksk             Pt

’=PG=GP w/ P0=I   ??? (4) & (5) above w/ W=0 

πt(x) Pnπ0  Gn(s)=Gn(s) 
E(πn)=Gn’(1)=E(π1)n 

Var(πn)= Gn”(1)+Gn’(1)-
Gn’(1)2  

=nσ2 or σ2(µn-1)µn-1 /(µ-1) 

eGtπ0  ΣsjP’=ΣsjG 
G(s,t)= 
Σsjpj(t)= 
E(sX(t)) 

solve difeq in 
G use G’, G” 

??? f(x,x0)=G(x,x0)/E(Ta|x0)*
pseudostationary distr 

(i.e | not extinct) 

π*=π∞  π*=P π*  N/A 
Goes to 0 if µ≤1 

Goes to 0 or ∞ if µ>1 

G π* = 0  see branching ??? 
C 

1
v(x)* exp{2 

m(x)
v(x) dx}

w/ C a constant to give 1 
first 

passage, Tx 
starting at 

state x 

first step method 

let P=



I 0

R Q   

then E(Ti)= ( (I-Q)-1 •1 )i 

 ???? calc E(Ti) for 
embedded 

P=W/(W•1) 
then Γ(E(Ti)) 

 G(0,t) ??? 

E(Ta|x0) = ⌡⌠
a

∞
G(x,x0)dx*

a=lower limit (e.g. 1) 
Uyx 

absorption 
into y given 

start  at x 

Uij= ( (I-Q)-1R )ji  if µ>1 then P{extinction} found 
smallest >0 s ∋ s=G(s) 

same as embedded 
chain P 

 ??? ??? p(b|x0,a) =  
[S(x0)-S(a)]/[S(b)-S(a)]*

 
 
* = formula for Green’s function (Karlin & Taylor 1981) 
s(x)=exp(-2∫x m(u)/v(u) du) 
S(x)=∫x s(u) du 
G(x0,x) =2[S(x)-S(a)]/[s(x)v(x)] ∀x<x0 

=2[s(x0)-s(a)]/[s(x)v(x)] ∀x>x0 

 
for simple exponential birth-death 
E(X(t))=I e (λ-µ)t     Var(X(t))= 2Iλt  if λ=µ     else I (λ+µ)/(λ-µ)e(λ-µ) t(e(λ-µ) t-1) 
 
 



 
 
 
 
 
 
 
 
 


